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Abstract

Optimal Bayesian multi-target filtering is, in general, computationally impraktieving to the high dimen-
sionality of the multi-target state. The Probability Hypothesis Density (PHDY fiitepagates the first moment of
the multi-target posterior distribution. While this reduces the dimensionality efptioblem, the PHD filter still
involves intractable integrals in many cases of interest. Several autheeshoposed Sequential Monte Carlo (SMC)
implementations of the PHD filter. However, these implementations are theatsnt of the Bootstrap Particle Filter,
and the latter is well known to be inefficient. Drawing on ideas from the AuyilRarticle Filter (APF), we present
a SMC implementation of the PHD filter which employs auxiliary variables to ecdats efficiency. Numerical
examples are presented for two scenarios, including a challenging eantservation model.

Index Terms

PHD Filter, Sequential Monte Carlo, Multi-Target Tracking, Auxiliary PaetiEilter.

I. INTRODUCTION

Multi-target filtering is a dynamic state estimation problén which both the number of hidden targets and the
locations of the targets are unknown. Additionally, they¢as appear and terminate at random times. The modelling
of multi-target dynamics in this manner naturally incomges track initiation and termination, a procedure that has
mostly been performed separately in traditional trackilggp@éthms.

As in the single-target case, optimal multi-target filtgrimvolves the propagation of the posterior distribution
through Bayes’ law. Exact optimal multi-target filteringilspossible in many cases of interest due to the presence
of intractable integrals in the filtering recursion. The ligggion of numerical methods (Monte Carlo or otherwise)
to approximate the optimal filter for multi-target modelseigremely computationally intensive owing to the high
dimensionality of the multi-target state.

Consider the state space of a single target- R?. Each point in this space may specify, for example, the

position and velocity of the target. Multi-target filteringvolves recursive computation of a distribution over the
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number of targets and each of their locationgingiven a sequence of noisy observations. The multi-targstepior
filtering distribution is therefore a probability distrition on the disjoint unior&-),CZO EF.

A more tractable alternative to the optimal multi-targaefilis the Probability Hypothesis Density filter of Mahler,
[1], which propagates the first moment of the multi-targestpdor, known as the intensity function or PHD. A
variety of related material and further information abdut PHD filter can be found in [2][Chapter 16].

While multi-target tracking is a mature field, the direct apgtion of Point Process (PP) formalism to the
derivation of the PHD filter is new to the area, with recentedegments being made in [3]. The PHD filter has
recently been the focus of much interest due to its favoergielrformance in multi-target tracking compared to
traditional approaches (we refer the reader to [4] for aetardf approaches to multi-target tracking not based
on the PP formalism). A generalization of the scheme, whitipagates a probability distribution on the number
of hidden targets, known as the Cardinalized PHD (CPHD)rfilbas also been proposed [5]. The motivation
for the development of this technique was to improve the itjuaf estimates of the number of hidden targets.
The multi-target tracking model to which the PHD filter can dqgplied has attracted significant attention in the
aerospace literature. However, this underlying model leaently also found applications in other fields such as
communications engineering, computer vision and audioasigrocessing, [6], [7], [8], [9], and therefore the PHD
filter is applicable in all these scenarios.

Sequential Monte Carlo (SMC) methods, [10], are a family @fvprful algorithms which recursively propagate a
set of weighted random samples, ternpadgiticles in order to approximate probability distributions of iregst. SMC
methods are motivated by the asymptotic properties of thecfmset. Under weak assumptions, as the number of
samples increases, the integral of a test function withe&sjoe the distribution defined by the particle set converges
to the integral of that function with respect to the corresting true distribution. In the context of filtering such
methods are known agarticle filters For non-linear, non-Gaussian state-space models thd epsimal filter
is analytically intractable, but SMC methods can yield vgood approximations of it. For such models, it has
been widely documented that SMC methods can exhibit sigmifig better performance than deterministic sub-
optimal filters such as the Extended Kalman filter (EKF), [&hH the Unscented Kalman filter (UKF) [12]. SMC
methods can and have been applied to the full Bayesian tanifet tracking problem, for example see [13], [14],
[15], [16], [17], but if targeting the true full Bayesian ntidlarget posterior distribution, such approaches become
computationally very expensive in high-dimensions, whighhe case when tracking several targets. Performance
of such algorithms may be improved for a specific class of nsoewhich it is possible to analytically integrate
out part of the model (a procedure known as Rao-Blackwdlhisg [18], but such an approach will ultimately still
be affected by high dimensionality of the problem when thenber of targets is large.

SMC methods can also be used to the approximate the intdnsittion of a PP and have previously be employed
to approximate the PHD recursion, [19], [20], [21], [18]stead of multi-target probability distributions, the sét o
weighted samples is now used to approximate intensity fongt including their total mass.

In this paper we present a new SMC implementation of the PHEr fithich significantly out-performs algorithms

proposed in the literature thus far. It builds on ideas frospacific SMC method originating from the Auxiliary
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Particle Filter (APF) of Pitt and Shephard [22]. This methmbsts the efficiency of the algorithm by pre-selecting
particles for propagation on the basis of their relatiopshith the most recently received observations. The prapose
method exhibits a natural mechanism for clustering of plsion the basis of the observations to which they are
assigned. This can be used as a tool for extracting stateatst. A preliminary version of the algorithm appeared
in [23].

The structure of this paper is as follows. In section Il wectiee the model underlying the PHD recursion, state
the recursion itself and fix notation. In section Il we déiserSMC methods and the APF. Section IV describes
existing particle implementations of the PHD filter. The poeed algorithm is formulated in section V where we
provide expressions for optimal proposal distributiond arterpret them in terms of the PP theory underlying the
PHD recursion. Numerical results are presented in sectlofo¥/two different models. We demonstrate methods for
constructing proposal distributions and show the imprasetin performance which is possible with the proposed

methods.

II. THE PHD HLTER

The PHD filter was originally developed in the framework ofiié Set Statistics (FISST) [1]. The relationship be-
tween FISST, conventional probability and conventionahpprocess theory is discussed in [24] and [2][Appendices
E and F]. More recently, the multi-target tracking probleas been formulated and the PHD filter derived directly
using the theory of PP’s [3]. For the purposes of the presesrkwve concern ourselves with the following
constructive definition of a finifePP [25]. A finite PPX = X;.x, is a random numbek of random points
X1.x each valued in a state spaég for example,E Cc R?, so that the PP itself takes values in the disjoint
union Lﬂkzo E*. The probability distribution oX can be specified by a probability distribution on the totahber
of points and, for each integdr > 1, a probability distribution on£*, which determines the conditional joint
probability distribution of the points(;.;, given that their total number i&.

The first moment or intensity of a PP yields the expected nurobgoints in a region of the state space. We

will specify this first moment in terms of aimtensity functiona : £ — R, so that:

E[N(A)] = /A a(z)dzr, Ac B(E),

where N(A) is the number of points oK which are in the sed and B(E) is the Borelo-algebra onE (for
theoretical details, see [25]). In the context of multgetrtracking, each point &X represents a hidden target. The
intensity function of the posterior distribution & is therefore very useful because it yields the expected eumb
of targets in any region of the state space. Peaks in thesityefunction can be used to estimate target locations
and the total mass of the intensity function provides anrest of the total number of targets. A filtering scheme
which propagates only this intensity function, as opposethé full posterior, is attractive as the dimensionality of

the problem is effectively reduced to the dimensionalityFof
1For convenience we will drop the ‘finite’ prefix in what follew
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The PHD filter consists of a prediction and update operatitnichv propagates the intensity function of the
multi-target posterior recursively in time [1]. It is deeid from the following model for the dynamics of the hidden
targets and noisy observations. See [25], [26] for backgpglaheory on Point Processes.

Consider a spatial Poisson process of unobserved plints X ;.x, where each element &, is random point
in a state spac&. Denote the intensity function &, by @; («). With probability ps(x), each point ofX survives
and mutates according to a Markov transition kernelfwith density f(z2|z1). This happens independently for
each point inX;. In addition to the surviving points aX;, new points are ‘born’ from a Poisson process with
intensity functiony(z). Denote byX, the PP onE defined by the superposition of the surviving pointsXof and
the newly born points. We denote it's intensity function doy(x).

The points ofX, are observed through the following model. With probability(z), each point 0fX, generates
a noisy observation in an observation spdt¢hrough a kernel with density(y|z). This happens independently
for each point ofX,. Let ® denote observations originating froX. In addition to these detected points, clutter
points from an independent Poisson processomenoted byK, with intensity functionx(y), are also observed.
Denote byY the superposition 0® andK, and a realization o by y = y1.m.

By the application of Bayes’ rule, the posterior distrilbutiof X5, given y can be obtained. Characterization
of this posterior distribution was first performed impligiin [1] via probability generating functionals and later
explicitly in [3]. This posterior distribution is not Poiss, but it can be shown that the Poisson process which is
distributed most closely to it in the sense of Kullback-Leildivergence must have the same first moment. It is this
intensity function which is propagated by the PHD recursiohich has the following prediction/update structure

at its nth iteration:

() = / F@nltn1)ps (@n1)@n1 (@n1)dn_1 +(wn), )
E
a’n(mn) = [1 - pD(x’rL) + i %%pi(jj”) Oén(xn)v (2)
=1 n,p

where forp = 1,2, ..., m,, suppressing the dependence on the observed quantitiesrfeenience,

wmp(x) = pD(m)gQ/n,p LE),

Zop= /Ewmp(x)an(x)dx + K(Ynp)-

In this notation,«, (z) and @, (x) are respectively termed the predicted and updated iniesisit iterationn. We
denote byy(y. »|x) the likelihood for thepth observation at iteration and bym,, the total number of observations
at iterationn. In the following we also adopt the notatidvi,, = {1,2, ..., m,}.

To aid presentation later on, we will employ the followingtation in describing the PHD recursion on an
extended state spadé = EU{s}, wheres is an isolated point that does not belongHpand is termed a ‘source’
state. Abusing notation we denote byeither a point inE or E’ depending on the context. The extended recursion

is as follows:
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n (i) = / £ (Enltn1 )05 (En 1)@y (Tn_1)dTn_1, 3)

El
i wn Ty
an(2,) = [1 —pp(z)+ S e |y (1), (4)
p=1 P
a;L(’I") = @n(z") + T (xn)v (5)

wherea;, (z,) is the extended updated intensity &4 andI’ = [, v(x)dz. The transition densityf’(z,|z,—1) is

extended to act front’ to £ as follows:

f/($n|xn_1) = f(xnlxnfl) Tn—1 € E 7
V(xn)/r Tp—1 =S

and the survival probability extended & as:

1 r=s5
The specification of the PHD recursion as per (3)—(5) is afrigst because (as we shall see in Section V) it allows
one iteration of the PHD predict/update operation to betemiin a fashion which can be approximated directly
using auxiliary SMC techniques. The idea of the ‘sourcetestaill allow the predicted intensity from the previous
iteration and birth intensity to be dealt with in a unified gdimg scheme, due to the form of (3).

Whilst the PHD filter reduces the dimensionality of the problehe PHD recursion still involves intractable
integrals in many cases of interest, the exception beindlittear—Gaussian’ case, where the PHD has a Gaussian
mixture form, [27]. We subsequently refer to this case asGh-PHD filter. However, in this case the number
of mixture components increases over time. Therefore, @demto bound the computational cost per iteration
of the filtering algorithm, a pruning/merging technique ypitally employed [27]. The error arising from this
pruning/merging was quantified in [28]. One practical adaga of the GM-PHD filter is that it readily admits
an heuristic for state—estimation: estimates can be dgttadirectly from the means of the Gaussian mixture
components, which (post—pruning) correspond to local sigrificant maxima of the intensity function.

PHD filter analogs of the EKF and UKF have also been developedde in non—linear models . These methods
rely on some deterministic approximation, (local lineatian of the model in case of the EKF and weighted point
approximations of moments in the case of the UKF) and as sultlalways exhibit some degree of bias relative
to the corresponding true PHD recursion. However, in miltbplinear scenarios they have been shown to perform
well in practice and can be computationally inexpensivd.[27

As introduced in Section |, the CPHD filter propagates a poditya distribution over the number of hidden targets
in addition to the PHD itself. It has been demonstrated thiatdpproach can produce more reliable estimates of the
number of hidden targets. Furthermore, it can be combined the Gaussian mixture and EKF/UKF techniques
described above [29].
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In general non-linear scenarios, numerical methods whemf an arbitrarily close approximation of the true
PHD are attractive. Monte Carlo methods are one class of swathods and the next section introduces some of

their characteristics.

IIl. SEQUENTIAL MONTE CARLO

Sequential Monte Carlo methods have become a standard doaofnputation in non-linear optimal filtering
problems and in this context have been terrpadicle filters We do not give explicit details of standard particle
filtering algorithms here, but rather provide the followisgmmary and refer to [10] and [30] for a variety of
algorithms, theoretical details and applications, [3¥]dageneral framework and [32] for underlying Monte Carlo
methods. SMC algorithms may be viewed as being constructed fdeas of Sequential Importance Sampling
(SIS) and resampling. They recursively propagate a set ajhted random samples callgzhrticles which are
used to approximate a sequence of probability distribstidime algorithms are such that, as the number of particles
tends to infinity and under weak assumptions, an integrdd veispect to the distribution defined by the particle set
converges to the integral with respect to the correspontting distribution.

A typical SMC algorithm consists of recursively proposirgrples from some instrumental distribution and
computing importance weights which account for the disaney between the instrumental distribution and the
distribution of interest. Occasionally, resampling frame distribution defined by the particle set is performedsThi
resampling step involves duplicating particles with higkights and discarding particles with low weights. It is
crucial in stabilizing the algorithm, as without it an SISheme would rapidly degenerate, carrying all weight on
a single particle and thus becoming useless for online asitim Estimates drawn from such an algorithm would
typically have very high variance. Treatments of this isboen a theoretical point of view are given in [33], [34]
and a comprehensive study of the underlying theory can bedfau the book length volume [35].

As mentioned in the introduction, SMC methods can be contjoui@ly very expensive when targeting the full
Bayesian multi-target posterior because of the high-dsimnof the space on which the filtering distribution is
defined. This expense arises from the need to use more partickombat an increase in estimator variance which
is, in essence, caused by the same phenomenon of weightedaggrwhich occurs when applying sequential
importance sampling in high dimensions (albeit occurrihgiagle iterations of the algorithm).

A generic and practical strategy by which to achieve efficjeim an SMC scheme is to ensure that the variance
of the importance weights is minimised [36]. This is impatt&ven in low dimensions. If the variance of the
importance weights is large, despite resampling, the dhgorwill suffer from the same problem of importance
weight degeneracy. Therefore an important factor in thetwa efficiency of SMC methods is the mechanism
by which particles are proposed. If degeneracy of the weighto be avoided, this mechanism should take into
account information from the observations and drive psidnto regions of high probability under the target
distribution. TheBootstrapparticle filter, [37], proposes particles from the tramsitikernel of the hidden process
in the state-space model, and resamples at every itera&mit does not take into account information from the

observations, it is typically inefficient and large numbefsparticles are required if reliable estimates are to be
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obtained from it.

The Auxiliary Particle Filter (APF) of Pitt and Shephard2]2selects particles for propagation on the basis of
how well matched they are to the observation at the next tit@p, svith the aim of reducing the variance of the
importance weights. The method originally took its namearfra set of auxiliary variables introduced to index
the particle set and in [38] it was noted that the scheme haspopal distribution of the same form as standard
particle filtering algorithms. More recently, in Johanse ®oucet, [39], the APF was reinterpreted as a sequential
importance sampling/resampling (SISR) algorithm targetn auxiliary sequence of distributions, with importance
weights correcting for the discrepancy between theseilligions and the distributions of interest. Thus the séeact
of particles arises simply from applying resampling to atiplr set subject to a set of auxiliary importance weights.
In the following sections we present an algorithm which agspldeas from the APF to the implementation of the
PHD filter.

IV. PARTICLE PHD HLTER

A particle implementation of the PHD filter in its full genéta was proposed in [19], around the same time
as two other independent works [20] and [21]. In [20], onlg #pecial case without clutter was considered. On
the other hand, [21] describes an implementation for theiapease with neither birth nor spawning. The theme
common to these approaches is the propagation of a parpgexmation to the intensity function through the
PHD recursion (1) and (2).

One iteration of existing particle PHD filters is outlinedfaows. Samples are drawn from a proposal distribution,
conditionally upon the previous particle set, and weightedccordance with the prediction operation. Supplemen-
tary particles dedicated to the birth term are then added Yields an approximation to the predicted intensity
o, Which is used in its entirety to approximate the integrdithe form [, ¢, ,(x)o, (z)dz in the denominators
of (2). The particles are then re-weighted according to ih@ate operator and resampling is performed. The total
weight of the particle set must be maintained and it yieldestimate of total number of targets .

In this framework it is not obvious how to choose the propaBsiribution in order to minimise the variance of
the weights. In practice, proposals are often made from tioe, pvhich is sub-optimal, and this is the analogue of
the Bootstrap particle filter, which is inefficient.

The particle implementation scheme of [21] includes reggddion. This idea involves resampling not from the
weighted particle set, but from an absolutely continuousbability distribution defined by convolving the particle
set (or subsets thereof, obtained by clustering) with aedeffhis idea has been applied to SMC algorithms in
the context of optimal filtering with the aim of increasingaeilisity of particle locations and the stability over time
of the algorithm, see for example [37], [40] and referendedin. It should be noted that regularization does
not employ information from the next observation to guide Helection or proposal of particles, in contrast to
the method proposed below. We note that it is possible to amemitegularization and local resampling with the

proposed scheme, although we do not explore this idea funidwe.
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Convergence results establishing the theoretical vgliditthe particle PHD filter have been obtained in [24],
[41] and [42].

V. AUXILIARY PARTICLE PHD RLTER
A. Outline of the Approach

In the APF, particles are selected for propagation on thes lzdidiow well they explain the next observation. We
employ this idea but with an extra selection step that firlgcte the observations that are explained by the particle
set as a whole. We will perform sampling on a higher dimeradigpace than existing implementations, but doing
so will allow us to:

(A1) Manage efficiently a fixed particle budget by concemgateffort on those observations which most

probably originate from true targets and therefore coatélbmost significantly to the r.h.s. of (2).

(A2) Employ a particle selection scheme which takes intamant observations, as in the APF.

(A3) Tailor the distributions from which samples are drawrthe observations using existing techniques from

the SMC literature.

To pave the way towards the proposed algorithm, we next densin hypothetical, static IS problem which is
modified in the next section to yield a recursive algorithm.

Consider the problem of estimating the following integral:

5= /E (@) n (), (6)

wherep is some suitable test function dfi. Assuming (for now) that the normalizing constagts, , },;, are
known, a Monte Carlo estimate of (6) may hypothetically béthising the following importance sampling (IS)
identity on £ x E' x M, and E x E’. This is just a re-writing of (1) and (2), using the notatiom the extended

state spacé’, (3)—(5):

Mn ’ ’ ~/
p= Z/ / (p(xn)wn,p(xn) f (xn|l‘n—1)p5’(xn—l)an—l(xn—l)q’ELl) ($n7$n—1,p)d$n_1d$n
p=17EJE

Z"’p qgll)(xn7mn—lap)
1- n ! n|tn— f n— /\/7 n—
+// Lp(xn)[ pp(w )]f(m(2|;%’ )P (Tn—1)ay, _(z 1)q,(12)(:vn,xn,1)dxn,1da:n, R
E ! qn (xnax’n,—l)

whereqﬁll)(xn, Zn-1,p) and q7(z2)(:vn,xn_1) are probability densities ot x E' x M,, and E x E’ respectively.

The idea behind the proposed SMC algorithm is to target (if)jgukS. We note that there are several ways in
which the integral (6) could be decomposed and targetedyusin For example, one could attempt to evaluate
the summation in the first term on the r.h.s. of (7) analylycals opposed to sampling over observation indices.
However, the decomposition in (8) has been chosen for afgpeeason related to point (Al). The discussion to
follow expands on this.

We focus on proposal distributions of the following formsased to have support such that (7) is valid:
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Vi (@n)@l s (201)
(1)(mn,xn 1) p) _q'gzl)(xn‘mnfh ) )p 1 qgll)(p)’
Je Vn,p(xn 1)al, 1 (xn—1)dxn_1

"D (1)@, (2n1)

S Vi (@n-1)8, (i 1)dan 1

where for eaclp, Vrg,lp) . B’ > Rt and V¥ : E' — R are bounded potential functions. Each of these functions

q7(12) (In, xn—l) = Q»Sf) (Jrn\xn_l)

is related to the concept of the ‘first-stage’ weight in theFARhose calculation involves evaluating a potential
function at sample locations. This parallel is made moreaegqt in the sequel. The rationale behind this approach
is that it is possible to achieve performance which is suped that of existing SMC implementations of the PHD
filter by building a proposal distribution in terms of the aped intensity (or its particle approximation) from the

previous time step.

We can then drauv (! mdependent identically distributed (iid) sampIeXn X @) P ’{}N( " from ¢\ (2, Tn_1,p),

) n,

N® iid samples, {Xn)Q,X( )1 oy :1 " from ¢ )(xn,acn_l) and form the followmg estimator of:

n

e N@
o= (X wd (0, X0 1 P + Z DX X0 1) (8)

n
1

2

%

where the importance weights are given by:

1 1 ¢71,p<$n)f (xn|xn 1)pS(In 1) Q,, 1(3371 1)

wnl) (xnamn—lvp) = (9)
N(l) Z n,p CI’SL )(xnaxnflvp)
. 1 1 fE’ Vnp Tn— l)an 1('rn 1)dxn 1
R Rop
> djn,(p)(zn)f/(zn‘ivn 1()1))%(1:71 1) (10)
(xn|$n 1,P )Vnp(xn 1)
and
/ / /
wf)(xmxnil) _ 1 [1=pp(@a)]f (xn|n—1)Ps(Tn—1)a), 1 (Tn_1) (11)
N(2) quz)(xnzxn—l)
_ 1 V(2) -~/ d
TNO® S, (Zp—1)a), 1 (Tn—1)dzn_1
[ _pD(mn)]f/(xnmnfl)pls(xnfl)
X o) @ . (12)

dn (xn‘xnfl)‘/n ($n71>
1) Optimal Proposal Distributions:As previously described, a generic scheme for ensuringdbaiestimator

does not have high variance is to minimise the variance ofirtif@rtance weights. The following proposition
establishes the choice of proposal distributions whichomtémal in this sense.
Proposition 1: The following choices minimise the variance of the |mpoctawe|ghts;wn )(Xn,Xn 1, P,) and

'LUr(L2)(Xn7 Xn—l):
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1 ~
ai P (p) o 5— / Vi P (n 1)@, (1) A1,
P

va,lp)yopt('rn—l) :/ ¢n,p(xn)f/(zn‘«ITI,—l)pig(IT),—l)d'rnv
E

Unp(@n) [ (@n|Tn—1)p5 (Tn-1)
fE qZ)”»P(1'77«)f/(1'n|1'n71)p{5:(l'nfl)dl'n ’

Q7(L1)’opt(xn|xn—13p) =

VR ) = / 11— po (@) (@nln—1)Ps (@01 )dan,
E

(2),0pt [1— pD(*Ln)}f,(fn|mn71)pi§(fﬂn—1)
o p( ‘x" 1) fE ]‘ - pD(an)} /(xn|xn71)pfg(1'n*1)d1'n, (13)

and in this case the estimator becomes:

m,L 1),opt ~, (1)
. p 1 zn > fEl rg,p 0p Tn— 1)0271(137171)(1:%71 N (i)
Pn = N(l) Z QD(XnJ)

N@
f ’ Vn2) opt(-rn l)an 1(xn 1)dxn 1 7
& 0 > e(X)-

1=1
Proof: Substitution readily yields that in the case of employing diptimal proposal distributions, the variances

of the weights (9) and (11) are both zero, as the importandghtgeare of the form:

w’SLl)(xnaxn—hm N(l) Z / ‘/rg,lp Opt(xn 1)an 1(In 1)da:n 1

and

1
N®)

(2) (mn’wn 1) / V(Q) opt( ,1)a;,1($n,1)d$n,1,

which do not depend om,,, z,,_1 or m.
|
Corollary 1: For a total ofN = N + N(2) samples, and when the optimal proposal distributions aggarad,

the importance weights are of zero variance and are all aguélke case that:

Moy, 1
N(l) x N % Z Vrg,lz?opt(xnfl)a;m—l(xnfl)dxnfl

p=1 B

N(z) O(NX/ V(z) Opt(xn 1) o, 1(13" 1)d£l?n 1
E’

Note that the optimal choice of proposal distributions espond to denominators of the two rightmost terms in
(10) and (12) being matched to their respective numeraldrs. is precisely as in the APF and has the following
interpretation. Giverp, we choose the particle from time— 1 that has a high weight and can explajn, well.
This particle is then propagated forward via the optimalppsal for this observation, which iﬁl)’om(:vn\an,p).
Similarly if we matchqff)(p) to the first term on the r.h.s. of (10), the weight contribntiaf that term will be

independent op. Choosingqél)(p) in this manner, as formalised below, amounts to selectisgifations according
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to the strength of the hypothesis that they are target gterMore specifically, the optimal proposal distribution,
q,(})""pt(p), has a probabilistic interpretation in terms of the spd#Bl theory underlying the PHD recursion, see
[3]. For convenience we reproduce the relevant aspectseofntbdel from which the the PHD recursion is derived.

Consider a spatial Poisson procé&ss= X;.x, where eachX is random point in a state spaée Denote the
intensity of X by «.,(z) and consider the following observation model. With probabipp(z), each point of
X generates a noisy observation in an observation spatierough a kernel with density(y|xz). This happens
independently for each point iX. Let ® denote the set of observations generated by poini.itn addition to
these detected points, clutter points from an independeiss&n process of, denoted byK, with intensityx(y),
are also observed. Denote iy the superposition 0® and K.

Proposition 2: Let X be a Poisson process as above, with intensjtyz). Then given a realization of observa-
tions, y,, = Yn.1.m,,,» according to the model described aboqkl,)’om(p) as defined in (13) is proportional to the
the posterior probability that thgth observed pointy,, ,,, originates from a hidden target.

Proof: The proof is adapted from [3] and involves the concept of nmarlka Poisson process, see [26][pp. 55]
for a definition. LetX be the points ofX that generate observations. Because pointX ajenerate observations
independently with location dependent probability (x), it follows that X is a Poisson process with intensity
pp(x)ay, (x) [26][pp. 56]. LetZ be a PP onE x F' comprised of pointgX,Y’), with the set of first coordinates
given by the restriction oX to points that generate observations, i%,,and the second coordinates given by the
corresponding observations. By the Marking Theorem [38]Fb], Z is Poisson with intensityp ()., () g(y|x).

We now define three new marked PP’s with position spBcand mark spac& = E U {A} where{A} is an
isolated one-point set which is not an elementrof

Firstly, defineE; to be a marked PP, where the point position&Egfare given byK (the clutter process), and
every point inE, carriesA as its mark. It follows thaE; is Poisson onF’ x {A}. Secondly, defineE, to be
{(Y,X): (X,Y) € Z}. SinceZ is Poisson, the process defined by swapping its first and demmrdinates is also
a Poisson process. Thirdly, denote Bythe superposition oE; and E,. The superposition of two independent
Poisson processes also yields a Poisson process with itgtbesng the sum of the two [26]. ThuR is Poisson

on F x E with intensityv(y, =) given by:

9(ylz)pp(x)an(z) =z € E,
v(y,x) =
K(y) T = A,
with the abuse of notation thatis a point inE. Note that the second coordinate of a point of a Poisson psooe
a product space can be viewed as a mark. The mark distributiely) for =, which is the conditional distribution

of the mark of a point, given its locatiof, is given by:

p(zly) = EADE
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where,

Za(y) = / o(yle)pp (2)an(@)dz + K(y).

The mark distribution is to be interpreted as follows: wittolpability 1 — «(y)/Z,(y) a mark inE is generated
according to the probability densitgyy|z)pp (z)an, (z)/ [ 9(y|z)pp(x) e, (z)dz. Otherwise the mark\ is chosen.
The proof is then complete since conditioned py, the marks are independent and distributed according to

H;":"l w(z|yn.,p), and therefore the posterior probability that an obsenadtpy,, , originates fromX is given by:

Knp) _ S5 9Wnplw)pp(@)om(x)dz
Zn(Yn.p) fE g(yn,;v|x)pD (z)on (z)dz + H(ynm)

o 45 (p).

1-—

|
Thus sampling fromq(l)o”t( ) allocates more particles to those observations which havegh posterior
probability of originating from hidden targets, achievipgint (A1).
2) Variance ReductionThe variance of the estimator (8) can be reduced by the apiglicof alternative methods
to sample from;fll)(p). For example, the residual, stratified and systematic dagnphechanisms (commonly used
to resample from the particle set in SMC methods) could bédiethpSee [43], [44], and references therein. These

methods are adopted in section VI.

B. Proposed Algorithm

To progress from the IS identity (7) to a practical recurslgorithm targeting the sequence of updated intensity
functions{a,, (x,)}.>0, We need some modifications.
Assume that at timex — 1 we have available a particle approximation &y_;, denoteda’’ ;(dz,_1) =

Zf;l Wfflldx(i) (dzn—1), in the sense that for some suitable test function
n—1

/E p(@)al_y (dx) ~22 [ ()n_1(da). (14)

N—o0 E

Also denote the extended particle particle approximationEd by:

aN' (dzn_1) =&Y (dzn_1) + Doy (dzn_1)

We modify the target integral (7) by replaciig, _; with its particle approximation. The proposal distribumigoare
also modified, as follows:
S Vi (el w180 <do: _1> + Vi ()T, (dar 1)
Zz 1 Vnp 1) Wy~ 1 + va}z))<5)r
SV VPP w6 w0 (den) + + Vi ()6 (dap 1)
" w )

Zz IV" ( Lp—1)Wp— 1+V(2)(SF

qg) (dzn_1|p) =

)

qr(LZ) (dzn-1) =
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Thus sampling fromjﬁf)(dxn_ﬂp) andqﬁf)(dxn_l) now amounts to resampling from the union of the re-weighted
particle set and an atom representing the birth mass. Thisakbgous to first stage sampling in the APF, achieving
point (A2). Intuitively, oncep is chosen, a particle from time— 1 is chosen to be propagated forward on the basis
of its current weight and how well it explaing, ,, taking into consideration survival and detection prolitds.
Comments on the practical choices of other elements of topgsal distributions are made below.

In the hypothetical IS integral (7), it was assumed that tbemalizing constantg Z,, ,, were known. In

p "1
practice this is not the case, and we need to estimate thenfFoo@®achz,, ,, this can be achieved using tmj
particles were sampled frorqn(})(xn,:cn,ﬂp). In principle, we could alternatively estimai®, , using the other
particles as well, but when the observations are well séparthis will be inefficient as such particles would make

very little contribution to the estimate. From the defimitiof Z,, ,, we therefore construct the following IS identity:

/ /qunp Tn) [ (@n|Tn—1)Ps (Tn—1)05 1 (Tn-1) (1)
np*
E/

q( )(x T ) 4 (Tn, Tp_1|p)da,de, o +/€(yn7p),
n nydn—1

and the corresponding estimator:

ViR (@)al (dx) > Ynp(X) (X 1|X£:11>ps<x“ "
1 1 1
N;P G d D xOXD v )

whereT,, = {i : P\") = p}, N\ = cardT,, ,,). This estimate of the normalizing constant is used in theeplsf

)

its true value in the importance weights, (10), (12), whigtdme:

Zpp= + K (Ynp) (15)

1 1 fE/ V;L,p Tn— 1)0& (da:n 1)
Nz, g (p)
/ /
% wn,p(xn)f (azn|xn_1)ps(xn_1) (16)

Q7(L1) (g;n|g:”_1,p)VrE,1]3 (x"—l)

wy(ll) (xrba xn—lap) =

and

1 /
2 _ 2 ~N
w,(l )(xn,an) =N /E’ Vn( )(an)an,l(dan)

[1—pp (mn)]f/(xnunfl)pfs(xnfl) _
02 (@|n1) Vi (2-1)

7

Note that in practice we need not compute (15) for arsuch thatN,gl) =0.

C. Design of Proposal Distributions

The optimal choicesV, )" (zn_1), ¢ (2p|zn_1,p) and Vi Pz, 1), ¢'2 (2, |2,_1), may often not
be available in practice.

The fact that the sampling scheme conditions on observatidices means thag'" P2, |z,—1,p) is of the
form:

(1),0pt

qn (In|$n_1,p) X wn,p(xn)f/(zn‘xn—l)-
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In order to approxmate;(l) Opt(xn|xn_1,p) it is possible to use techniques commonly applied in cortjanc
with the standard particle filter, such as local-lineai@atof the dynamical model, Laplace approximations or the
Unscented Transform (UT). Therefore poii®3) is achieved. See [36], [45] for several possibilities anctisa

VI for specific details of use of the UT.

One possible strategy forchoosm(é,p (2,—1), originating from [22], is to approximatf ¢, , () f' (zn|2n—1)dz),
with ¢, , (pn (2,—1)), wherew,, (z,,—1) is the mean or mode of (z,,|x,,—1). However, it was pointed out in [39] that
such an approach can lead to an estimator with high varidrmemmuse the approximation may be too concentrated
relative toV(l) °pt(xn 1). To address this problem we could apply tempering to theigarset once it has been

re-weighted by the potential function and set:

" S Vi (e g0 0 (dey1) + (Vi ()10 (da1)
Qn (dxn—1|p) - N (1) (7,) B (1) B
Zi:l[V"P( n- 1)wn—1] + [Vap (s)T]
where( < e < 1. Similar techniques can be applied to approxin‘lé,f%)’om(xn_l). Other suggestions can be found
in [39], [45].

The optimal choice of distribution over observation ind;inéf)(p), may not be available in practice (outside the

‘linear—Gaussian case’), as it involves the unknown noiirgj constants{Z, ,} ', which are to be estimated

p=11
after having sampled from,(f)(p). However, sensible approximation of this optimal disttiba can still yield good

),opt(

performance. For example, having used one of the above aetttoapproximate théﬁf,lp Zn—1), We could

choose:

1
fE, 813 Ny (da)
fE/ IL p AN/ (dx) + ’f(yn,p)
The same issue of high estimator variance due to over—cman:ed proposal distributions may arise here, and in

q" (p) o (18)

practice a similar tempering approach may be necessary.
The algorithm for the auxiliary particle PHD filter is giverlbw, with k; being the expected initial number of

targets. The computational complexity of the algorithnign,, V) at thenth iteration.

VI. SIMULATION STUDY

We present simulation results to demonstrate the improxesnie performance over existing PHD filtering
algorithms which are possible under the proposed scheme.

Consider a constant velocity tracking model for a vehicleoséh position is specified in two dimensions,
restricted to the window0, 100] x [0,100]. The state of a single target is specified by alimensional vector
Tp = [T Tn2;Tns Tnalls [Tn1 vn3)T specifies position angt,, » ., 4]7 specifies velocity. The target dynamics

are defined by:
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n=>0

:fori=1to N do

2t ~ go(2)

w%z) = % ko

. end for
n+—n+1

cfori=1to NV do

P9 ~aM(p)
X'r(fll,l ~ q,(})(a:n,ﬂp?(f’)l)
X~ g @alel2y 1, p0h)
end for
for i =1to N® do
X0~ g (@)
Xv(:)2 ~ q£2)($n|37£:)—1,2)
end for
for p =1 tom, do
if N\Y > 0 then
computeé’nm as per equation (15)
end if
end for
for i =1to NV do
n,1»
end for
for i =1to N do
computeW,\'} = wi (X},

end for

the empirical measurg” (dz,,) = vazl wis
Goto 6

. 1. Auxiliary SMC PHD algorithm

x® (

computeW,(Lf)1 = wq(ll)(X(i) Xfflm, Pﬁbf)l) as per equation (16)

X’I(Lill,Q) as per equation (17)

dx,,) approximatesy

obtain {W", X1 | by taking the union of W\, X} and (W}, x|}V
n(

n,2Ji=11

dxy,)

and relabelling

15
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1 1 0 0 (%1

01 00O o)
LTy = Tpn—1+

0 011 V3

0 0 01 V4

wherewv;, v3 andvq, v4 are i.i.d. zero mean Gaussian with standard deviadipn = 0.02 andv,, v4 are i.i.d. zero
mean Gaussian with standard deviatioy, = 0.3. Probability of survival is seps = 0.98 and the birth intensity

is defined asy = 0.2N/(+; 2, X)), Where:

30 9 0 0 O
0 01 0 0
Ty = , Lp = (19)
30 0 0 9 0
0 0 0 0 1

A. Example 1

In this first example, for illustrative purposes only, thesjion of the target is observed in additive, isotropic
Gaussian noise with standard deviation= 0.2. Ground truth data is shown in Fig. (3). We explore two clutte
scenarios. In both scenarios, the clutter intensity is sgotm on [0, 100] x [0, 100]. In the first cases = 0.001,
corresponding to an average 1 clutter points per scan, and in the second case 0.005, corresponding to an
average number df0 clutter points per scan. In both cases weset= 0.99.

While the structure of this model is simple, the low obsepmithoise is a challenge for SMC algorithms. The
localization of the likelihood means that blind proposadwé little chance of putting particles in regions of high
weight.

In the two clutter scenarios we tested the reliability of fireposed algorithm relative to the bootstrap PHD
filter, by repeatedly running the algorithm over fixed obsaginn records generated from the model. In both cases
the GM-PHD filter of [27] was used to compute a ‘baseline’ lesthis essentially allows the performance of
the SMC algorithms to be tested against a very close appatiom of the true PHD filter for this model. For
the GM—PHD algorithm, the total number of mixture composengs set td 00, the merging radius was set #o
and the pruning threshold was set1to—>. It was found that using more conservative values did natiaantly
change the performance of the algorithm.

In the two scenarios, due to the linear-Gaussian naturesahthdel, it is possible to employ the optimal proposal
distributions described in section V, where in the casg.bf*”" (p), @;,_; used in place ofv,_;. It is also possible
to employ the optimal particle allocation of Corollaty with N(?) rounded up to the nearest integer. Agaifi ,
was used in place af,_; for computation ofN() and N,

1) Low Clutter: In the low clutter scenario, the two SMC algorithms were iempénted withV = 500 particles,
with 170 allocated to births for the bootstrap algorithm. Both aitions were initialized withky = 2, sampling
from N (-5 zp, ).
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In order to demonstrate the superior performance of thegseg algorithm we focus on two characteristics of
the particle set: its total mass at each iteration and theckfe Sample Size - a standard quantity for assessing
the efficiency of SMC algorithms (further details given lvéjo

We first discuss results for the low clutter scenario. Fig.gf2ows images of normalized histograms of the total
mass of the particle set for the bootstrap and auxiliary rittyms. The observation record was of length= 40.

For each image, a vertical strip corresponding to a singfe tindex shows a normalized histogram of the total
mass of the particle set, ové00 independent runs of the algorithm. The darker the pixel,ntoee frequently the
total mass took the corresponding value. Super—imposeueisrie number of targets (dashed line) and the total
mass of the PHD computed using the GM-PHD filter (solid lin@-pruning/merging. It should also be noted that
the total mass of the the particle set is independent of whateeuristic clustering device is used to extract target
state estimates. Thus we concentrate on the efficiency oM@ techniques.

There are two important features to note. Firstly, the imfage¢he bootstrap algorithm indicates greater variation
in the output of the algorithm across independent runs, evetbto the auxiliary algorithm. Secondly, the bootstrap
algorithm frequently under-estimates the number of targetween time steg) and40 as during these iterations
the total mass of the particle set if very frequently lowearttthe true number of targets present. This is due to
the bootstrap algorithm loosing track of targets and fgilia identify the birth of a target at = 11. By contrast,
the auxiliary algorithm is able to track reliably all thedats. It also more closely follows the total mass computed
using the GM-PHD filter.

The total mass of the GM-PHD filter is generally slightly heglthan that obtained from the SMC algorithms. We
conjecture that in the case of this model the GM—PHD filtetbie &0 accurately represent the large number of small
modes in the true PHD. The SMC methods often neglect thes#esmzodes, with particles concentrated on the
more significant modes. We further conjecture that the peakise total mass of the intensity can be explained as
follows. Any observation which is made close to the birthioegcontributes positive mass to the updated intensity,
irrespective of whether or not it originates from a hiddemy¢s As pointed out by one anonymous reviewer, using
a lower value ofl’ might reduce this effect.

We note that it is recommended in [27] that the mixture congods in the GM—PHD filter should be thresholded
according to their weight post pruning/merging, in ordeestimate the number of targets present. We have chosen
to show the total mass pre—thresholding, as the aim of thasngle is to show how well the proposed algorithm
approximates the true PHD.

As noted in section Il, the peaks in the intensity function ba used to obtain state estimates for individual targets.
In existing particle implementations of the PHD filter, théxjuires heuristic clustering of the particles, followed b
estimation within each cluster. For the auxiliary partildD filter, there is a natural (albeit still heuristic) metho
which can be employed to this end without the increased ctatipnal cost of employing a clustering algorithm.
This consists of simply computing estimates from partidkstered by common values Gf,gi). An estimate is
taken when the total weight of the cluster exceeds somehbieise.g.0.5. This method can be expected to work

well when the clutter intensity is not too high. For each abagon with a positive number of particles assigned to
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Fig. 2. Low clutter scenario. Normalized histograms of thaltmhass of the particle set. Each vertical strip in the imageesponds to
a normalized histogram of the total mass of the particle sehait time index, averaged ovén0 independent runs of the algorithm. Left:
Bootstrap filter. Right: Auxiliary filter. Superimposed poin both cases show the true number of targets (dashed) andtéhenass of the
updated intensity computed by the GM—PHD algorithm (solid).
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Fig. 3. Low clutter scenario. Ground truth target positi¢sslid line) and state estimates (crosses) for auxiliargrfiltO clutter points per

scan.

Fig. 4. Low clutter scenario. Effective sample size versemtiion of the algorithm, averaged over 100 runs with= 500 particles. Dashed:
Auxiliary filter. Solid: Bootstrap filter.10 clutter points per scan.
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Fig. 5. High clutter scenario. Normalized histograms of th@ltoass of the particle set. Each vertical strip in the imageesponds to
a normalized histogram of the total mass of the particle sehait time index, averaged ovén0 independent runs of the algorithm. Left:
Bootstrap filter. Right: Auxiliary filter. Superimposed poin both cases show the true number of targets (dashed) andtéhenass of the
updated intensity computed by the GM—PHD filter (solid).
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Fig. 6. High clutter scenario. Ground truth target posgidgsolid line) and state estimates (crosses) for auxiliatgrfi50 clutter points per

scan.
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Fig. 7. High clutter scenario. Effective sample size verseistion of the algorithm, averaged over 100 runs with= 3000 particles. Dashed:
Auxiliary filter. Solid: Bootstrap filter50 clutter points per scan.
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it, a state estimate can be obtained by normalizing the weigftthe corresponding particles and taking the weighted
mean of the particle locations. This method for state estimabares some similarities to that proposed for the
GM-PHD filter in [27]: in the latter case, state estimates @n@vn from individual Gaussian mixture components
(after thresholding by mass), each of which is associatéd an observation index € {1, ..., m,}.

Estimates computed using the proposed clustering method $ingle run of the auxiliary particle algorithm in
the low clutter scenario are shown in Fig. (3). The solid dife this plot show the true position trajectories from
which the observations were generated.

Secondly, the effective sample size (ESS), introduced B8j, [Brovides a measure of the degeneracy of the
importance weights. It has a maximum value equal to the taiatber of particles. In practice, the ESS may not

be evaluated exactly but it can be estimated from the parsiet as follows:

~ 1
Neff = N (i 3
SN (@)

where {@5?};’21 are the normalised importance weights. When the ESS is sB86C algorithms can collapse
giving very high variance estimators.

Fig. (7) shows the ESS of the normalized particle sets, tatled at each iteration and then averaged across the
100 runs. As the auxiliary algorithm uses the optimal proposstrithutions the variation of the importance weights
is tiny (in fact the only variation occurs becaud&? is rounded up to the nearest integer). At all iterations, the
average ESS for the bootstrap algorithm is lower than thathfe auxiliary algorithm.

In terms of computational cost, the proposed algorithm veamd to be similar to the bootstrap algorithm. In
general, the auxiliary approach incurs costs associatéidl @@mputing the parameters of proposal distributions
which the bootstrap algorithm does not. However, this isahedd by the inexpensive state—estimation scheme
which can be employed with the auxiliary algorithm. Both SMt@thods are typically more expensive than the
GM-PHD algorithm, which does not involve random number gatien.

2) High Clutter: In the high clutter scenario both algorithms had= 3000 of which 1000 were allocated to
births for the bootstrap algorithm. Both algorithms wergiatized in the same manner as in the low clutter case.

We now discuss results in the high clutter scenario. The @sagf Fig. (5) again indicate that the proposed
algorithm is more reliable than the bootstrap algorithnroas100 independent runs the total mass of the particle
set exhibits less variation so the pixels in the image plottf@ auxiliary algorithm are less ‘smeared—out’. As
in the low clutter scenario, the bootstrap algorithm fraglyeloses track of one target and so the total mass of
the particle set is often lower than the true number of tarpetween time indice20 and40. In the high clutter
scenario, the GM—-PHD filter again accurately portrays mangllsmodes in the true PHD so its total mass is again
higher than that of the SMC algorithms. In figure Fig. (7), 88S is again significantly higher for the auxiliary
algorithm compared to the bootstrap method. Position eséisnobtained from the auxiliary algorithm using the

method described above are shown in Fig. 6.
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B. Example 2

In this second example, we use the same dynamical model aediata as in Example 1, but with a range and

bearing observation model:

yff) =/ 1'37,,1 + (E%3 + Un,r,

x
y®) = arctan ( "’3> + Un b,

Tn,1

wherew,, , andu,,; are zero mean Gaussian disturbances of variaticand gg respectively.

For this challenging nonlinear observation model, we destrate the performance of the proposed algorithm
using the UT to approximate the optimal proposal distrimgi The UT employs a set of deterministic weighted
points (calledsigma point} to capture the mean and covariance of a probability digfidh. A Kalman recursion
can then be executed on these quantities yielding a detistiniapproximation to the optimal filter, see [46], [12],
[47] for details.

We use the UT to approximate ea&f;{}p)’o”t in the same manner that it is used to approximate the preelicti
likelihood in [45]. This requires sigma points and assamatwveights to be calculated for each particle and the
mean of the normalized birth intensity, at each iteratioor. €chp, ¢, (p) and qﬁll)(d:vnqlp) are constructed in

terms of:

valp)(l’s)_ﬂ = Z ¢n,p(c1(ﬁl,j))\£f)—1,j (20)
j=1

Where{C,(:le i and{/\ﬁfll’j %_, are respectively the locations and weights of the sigmatpaihich collectively
capture the mean and covariancefcéfcn\xffll) for the ith particle ina (z,_1). The same procedure is also
carried out once at each iteration for the birth term to cubté,f}p)(s) in terms of sigma points which capture the
characteristics ofy(z)/T.

The value ofv is dictated by the UT. The scheme in [46] has- 2d + 1 whered is the dimension of. In the
case of this example; = 9, which is dominated in order of magnitude by the total numifegparticles employed.
Therefore the arithmetic operations involved in computimg sigma points, the weights and (20) for each particle
do not significantly increase the overall computationalesge of the algorithm.

Finally, the proposal distributioq,(f)(dxn|x£fll,p) is obtained by passing the mean and covariance captured by
the sigma points ofvﬁfll (the same point locations and weights which have already beeputed) through the
update operation of the Kalman filtering recursion, using,(z,,) as the likelihood function, see [12] for details.

P d, |2l 1, p).

This yields a Gaussian approximation ()26)’
In this example we use the same dynamical noise varianceshangame birth intensity as in examgle(19).
The clutter intensity is set to be uniform oviér 141] x [0, w/2], with an average o020 clutter points per scan. The
standard deviation of the bearing noise was set;te- 0.002. We consider various values of tlae, the standard

deviation of the range observation noise and wepset= 0.98 andpg = 0.98.
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We compare the proposed algorithm to the bootstrap SMC Pt fihd the UKF-type Gaussian Mixture (UKF—
GM) implementation of the PHD filter of [27]. For the latter wet the maximum number of mixture components
post pruning/merging ta00, the merge radius td and the pruning threshold tt0—°. We also use the scheme
advocated in [27] to extract point estimates: after pruimregging, the means of mixture components with mass
greater thar).5 were taken as point position estimates. We note using diftevalues for any of these parameters
did not significantly improve the performance of the aldurit

Both SMC algorithms used a total ®500 particles, with500 being assigned to births in the bootstrap algorithm.
For the auxiliary algorithm we fixedv(?) = 150.

In order to compare the quality of the position estimatemftbe UKF-GM algorithms with those obtained from
the proposed algorithm, we computed the Wasserstein RistlvD) between the set of point position estimates
and the true target positions at each iteration (see [48]uidher information about this metric). For the proposed
algorithm, the natural clustering mechanism for obtairstefe estimates was employed, as described above.

Comparisons were made by computing the average WD ovetfttiterations of the algorithm, for various values
of the range noise standard deviation Results are presented in figure 8. Whenwas small, it was found that

the UKF-GM filter worked well, but as,. was increased, its performance degraded.

10

WD

Fig. 8. Wasserstein distance between position estimatesraed/alues versus range observation noise standard ideviateraged over 40
iterations of algorithm. Dashed: Auxiliary filter. Solid: BGM filter.

In order to better compare the reliability of the proposegbethm to the UKF—GM and bootstrap algorithm, the
total mass of the corresponding approximations of the tois of the PHD were recorded ovgl0 independent
runs of the algorithm, each with a different observatiorordcand with fixeds,, = 1.5. This allows us to portray
the robustness of the filtering algorithms to variation is@lvation records. Fig. (9) shows normalized histograms
of the total mass of the PHD from the three algorithms in threeséormat as the image plots in Example 1. Again,
a dark pixel indicates that the total mass of the PHD fredudnbk that value across runs of the algorithm. The
dashed line indicates the true number of targets. For ttample, we are unable to compute the true PHD, due to
the non-linearity of the model.

The results for the bootstrap algorithm indicate that itdasiewhat unreliable, with few dark pixels in the image
plots. As in Example 1, the total mass of the particle setéguently less than the true number of targets between
time indices20 and40. For the UKF-GM filter, the total mass fluctuates widely asrdéferent observation records.

It seems reliable over early iterations, where the totalsxfesguently matches the true number of targets, but at
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subsequent iterations the total mass is often significdotiyer than the true number of targets and at the later
iterations it appears to sometimes ‘lose—track’ altogethRer the auxiliary algorithm, the dark pixels indicate ttha
the total mass is frequently close to the true number of taygdthough at later iterations the mass is occasionally
lower.

We note that there are fewer spikes in the total mass of th&lgaset compared to Example 1. However, in the
image plots of Examplé it should be noted that we considered a single fixed observagquence, where as in
this example we consider results obtained over differesenlation records generated from the model. Hence the
small spikes in the PHD are averaged out and do not featundfisantly in the image plots.

For further comparison of the proposed method with the b@Eg@sSMC algorithm we again compute the ESS
and average ovet00 runs of the algorithm. The results are shown in Fig. 10. Th& ESagain higher for the
proposed method than for the bootstrap algorithm. The omggificant transient features in the the ESS for the
proposed algorithm are after initialisation and aroung: 11 when the third target appears.

Finally, position estimates obtained from the proposedriigm are plotted in figure 11 along with the true

position trajectories. The same method for state extmaatias used as described in Example 1.

VIl. CONCLUSIONS

We have introduced an auxiliary particle implementationtleé PHD filter. The proposed scheme involves
auxiliary random variables which index observations aretg@lection of particles on a per-observation basis in a
manner similar to the APF. The resulting algorithm samplesdiigher dimensional space than previous particle
implementations of the PHD filter, but doing so permits mdf&ient proposal mechanisms.

In SMC algorithms, it is importance to minimise the variarafethe importance weights in order to obtain
low-variance estimators. In existing implementations toé HD filter it is not clear how to do so. We have
provided guidance on choices of proposal distributionscividre optimal in this sense and provided interpretation
of them in terms of the PP model underlying the PHD recursgpecifically, the value of the optimal proposal
distribution probability for an observation index has bsbown to be proportional to the posterior probability that
the corresponding observation originates from a true tagieen a Poisson prior. The proposed method exhibits a
natural mechanism for clustering of particles on the bakihi® observations to which they are assigned. This can
be used as a computationally inexpensive tool for extrgcttiate estimates. Numerical results have demonstrated
the gains in efficiency which are possible using the prop@ggatoach.

As pointed out by one anonymous reviewer, it may be possblepply similar techniques for implementation

of the CPHD filter. This is a possible avenue for future work.
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