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Auxiliary Particle Implementation of the

Probability Hypothesis Density Filter
Nick Whiteley, Sumeetpal Singh and Simon Godsill

Abstract

Optimal Bayesian multi-target filtering is, in general, computationally impractical owing to the high dimen-

sionality of the multi-target state. The Probability Hypothesis Density (PHD) filter propagates the first moment of

the multi-target posterior distribution. While this reduces the dimensionality of the problem, the PHD filter still

involves intractable integrals in many cases of interest. Several authors have proposed Sequential Monte Carlo (SMC)

implementations of the PHD filter. However, these implementations are the equivalent of the Bootstrap Particle Filter,

and the latter is well known to be inefficient. Drawing on ideas from the Auxiliary Particle Filter (APF), we present

a SMC implementation of the PHD filter which employs auxiliary variables to enhance its efficiency. Numerical

examples are presented for two scenarios, including a challenging nonlinear observation model.

Index Terms

PHD Filter, Sequential Monte Carlo, Multi-Target Tracking, Auxiliary Particle Filter.

I. I NTRODUCTION

Multi-target filtering is a dynamic state estimation problem in which both the number of hidden targets and the

locations of the targets are unknown. Additionally, the targets appear and terminate at random times. The modelling

of multi-target dynamics in this manner naturally incorporates track initiation and termination, a procedure that has

mostly been performed separately in traditional tracking algorithms.

As in the single-target case, optimal multi-target filtering involves the propagation of the posterior distribution

through Bayes’ law. Exact optimal multi-target filtering isimpossible in many cases of interest due to the presence

of intractable integrals in the filtering recursion. The application of numerical methods (Monte Carlo or otherwise)

to approximate the optimal filter for multi-target models isextremely computationally intensive owing to the high

dimensionality of the multi-target state.

Consider the state space of a single target,E ⊂ R
d. Each point in this space may specify, for example, the

position and velocity of the target. Multi-target filteringinvolves recursive computation of a distribution over the
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number of targets and each of their locations inE, given a sequence of noisy observations. The multi-target posterior

filtering distribution is therefore a probability distribution on the disjoint union
⊎

k≥0E
k.

A more tractable alternative to the optimal multi-target filter is the Probability Hypothesis Density filter of Mahler,

[1], which propagates the first moment of the multi-target posterior, known as the intensity function or PHD. A

variety of related material and further information about the PHD filter can be found in [2][Chapter 16].

While multi-target tracking is a mature field, the direct application of Point Process (PP) formalism to the

derivation of the PHD filter is new to the area, with recent developments being made in [3]. The PHD filter has

recently been the focus of much interest due to its favourable performance in multi-target tracking compared to

traditional approaches (we refer the reader to [4] for a variety of approaches to multi-target tracking not based

on the PP formalism). A generalization of the scheme, which propagates a probability distribution on the number

of hidden targets, known as the Cardinalized PHD (CPHD) filter, has also been proposed [5]. The motivation

for the development of this technique was to improve the quality of estimates of the number of hidden targets.

The multi-target tracking model to which the PHD filter can beapplied has attracted significant attention in the

aerospace literature. However, this underlying model has recently also found applications in other fields such as

communications engineering, computer vision and audio signal processing, [6], [7], [8], [9], and therefore the PHD

filter is applicable in all these scenarios.

Sequential Monte Carlo (SMC) methods, [10], are a family of powerful algorithms which recursively propagate a

set of weighted random samples, termedparticles, in order to approximate probability distributions of interest. SMC

methods are motivated by the asymptotic properties of the particle set. Under weak assumptions, as the number of

samples increases, the integral of a test function with respect to the distribution defined by the particle set converges

to the integral of that function with respect to the corresponding true distribution. In the context of filtering such

methods are known asparticle filters. For non-linear, non-Gaussian state-space models the exact optimal filter

is analytically intractable, but SMC methods can yield verygood approximations of it. For such models, it has

been widely documented that SMC methods can exhibit significantly better performance than deterministic sub-

optimal filters such as the Extended Kalman filter (EKF), [11]and the Unscented Kalman filter (UKF) [12]. SMC

methods can and have been applied to the full Bayesian multi-target tracking problem, for example see [13], [14],

[15], [16], [17], but if targeting the true full Bayesian multi-target posterior distribution, such approaches become

computationally very expensive in high-dimensions, whichis the case when tracking several targets. Performance

of such algorithms may be improved for a specific class of models in which it is possible to analytically integrate

out part of the model (a procedure known as Rao-Blackwellisation), [18], but such an approach will ultimately still

be affected by high dimensionality of the problem when the number of targets is large.

SMC methods can also be used to the approximate the intensityfunction of a PP and have previously be employed

to approximate the PHD recursion, [19], [20], [21], [18]. Instead of multi-target probability distributions, the set of

weighted samples is now used to approximate intensity functions, including their total mass.

In this paper we present a new SMC implementation of the PHD filter which significantly out-performs algorithms

proposed in the literature thus far. It builds on ideas from aspecific SMC method originating from the Auxiliary
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Particle Filter (APF) of Pitt and Shephard [22]. This methodboosts the efficiency of the algorithm by pre-selecting

particles for propagation on the basis of their relationship with the most recently received observations. The proposed

method exhibits a natural mechanism for clustering of particles on the basis of the observations to which they are

assigned. This can be used as a tool for extracting state estimates. A preliminary version of the algorithm appeared

in [23].

The structure of this paper is as follows. In section II we describe the model underlying the PHD recursion, state

the recursion itself and fix notation. In section III we describe SMC methods and the APF. Section IV describes

existing particle implementations of the PHD filter. The proposed algorithm is formulated in section V where we

provide expressions for optimal proposal distributions and interpret them in terms of the PP theory underlying the

PHD recursion. Numerical results are presented in section VI, for two different models. We demonstrate methods for

constructing proposal distributions and show the improvement in performance which is possible with the proposed

methods.

II. T HE PHD FILTER

The PHD filter was originally developed in the framework of Finite Set Statistics (FISST) [1]. The relationship be-

tween FISST, conventional probability and conventional point process theory is discussed in [24] and [2][Appendices

E and F]. More recently, the multi-target tracking problem has been formulated and the PHD filter derived directly

using the theory of PP’s [3]. For the purposes of the present work we concern ourselves with the following

constructive definition of a finite1 PP [25]. A finite PP,X = X1:K , is a random numberK of random points

X1:K each valued in a state spaceE, for example,E ⊂ R
d, so that the PP itself takes values in the disjoint

union
⊎

k≥0E
k. The probability distribution ofX can be specified by a probability distribution on the total number

of points and, for each integerk ≥ 1, a probability distribution onEk, which determines the conditional joint

probability distribution of the pointsX1:k, given that their total number isk.

The first moment or intensity of a PP yields the expected number of points in a region of the state space. We

will specify this first moment in terms of anintensity function, α : E → R+, so that:

E[N(A)] =

∫

A

α(x)dx, A ∈ B(E),

whereN(A) is the number of points ofX which are in the setA andB(E) is the Borelσ-algebra onE (for

theoretical details, see [25]). In the context of multi-target tracking, each point ofX represents a hidden target. The

intensity function of the posterior distribution ofX is therefore very useful because it yields the expected number

of targets in any region of the state space. Peaks in the intensity function can be used to estimate target locations

and the total mass of the intensity function provides an estimate of the total number of targets. A filtering scheme

which propagates only this intensity function, as opposed to the full posterior, is attractive as the dimensionality of

the problem is effectively reduced to the dimensionality ofE.

1For convenience we will drop the ‘finite’ prefix in what follows.
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The PHD filter consists of a prediction and update operation which propagates the intensity function of the

multi-target posterior recursively in time [1]. It is derived from the following model for the dynamics of the hidden

targets and noisy observations. See [25], [26] for background theory on Point Processes.

Consider a spatial Poisson process of unobserved pointsX1 = X1,1:K , where each element ofX1 is random point

in a state spaceE. Denote the intensity function ofX1 by α̂1(x). With probabilitypS(x), each point ofX survives

and mutates according to a Markov transition kernel onE with densityf(x2|x1). This happens independently for

each point inX1. In addition to the surviving points ofX1, new points are ‘born’ from a Poisson process with

intensity functionγ(x). Denote byX2 the PP onE defined by the superposition of the surviving points ofX1 and

the newly born points. We denote it’s intensity function byα2(x).

The points ofX2 are observed through the following model. With probabilitypD(x), each point ofX2 generates

a noisy observation in an observation spaceF through a kernel with densityg(y|x). This happens independently

for each point ofX2. Let Θ denote observations originating fromX2. In addition to these detected points, clutter

points from an independent Poisson process onF , denoted byK, with intensity functionκ(y), are also observed.

Denote byY the superposition ofΘ andK, and a realization ofY by y = y1:m.

By the application of Bayes’ rule, the posterior distribution of X2 given y can be obtained. Characterization

of this posterior distribution was first performed implicitly in [1] via probability generating functionals and later

explicitly in [3]. This posterior distribution is not Poisson, but it can be shown that the Poisson process which is

distributed most closely to it in the sense of Kullback-Leibler divergence must have the same first moment. It is this

intensity function which is propagated by the PHD recursion, which has the following prediction/update structure

at its nth iteration:

αn(xn) =

∫

E

f(xn|xn−1)pS(xn−1)α̂n−1(xn−1)dxn−1 + γ(xn), (1)

α̂n(xn) =

[
1− pD(xn) +

mn∑

p=1

ψn,p(xn)

Zn,p

]
αn(xn), (2)

where forp = 1, 2, ...,mn, suppressing the dependence on the observed quantities forconvenience,

ψn,p(x) = pD(x)g(yn,p|x),

Zn,p =

∫

E

ψn,p(x)αn(x)dx+ κ(yn,p).

In this notation,αn(x) and α̂n(x) are respectively termed the predicted and updated intensities at iterationn. We

denote byg(yn,p|x) the likelihood for thepth observation at iterationn and bymn the total number of observations

at iterationn. In the following we also adopt the notationMn = {1, 2, ...,mn}.

To aid presentation later on, we will employ the following notation in describing the PHD recursion on an

extended state spaceE′ = E∪{s}, wheres is an isolated point that does not belong toE, and is termed a ‘source’

state. Abusing notation we denote byx either a point inE or E′ depending on the context. The extended recursion

is as follows:
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αn(xn) =

∫

E′

f ′(xn|xn−1)p
′
S(xn−1)α̂

′
n−1(xn−1)dxn−1, (3)

α̂n(xn) =

[
1− pD(x) +

mn∑

p=1

ψn,p(xn)

Zn,p

]
αn(xn), (4)

α̂′
n(xn) = α̂n(xn) + Γδs(xn), (5)

whereα̂′
n(xn) is the extended updated intensity onE′ andΓ =

∫
E
γ(x)dx. The transition density,f ′(xn|xn−1) is

extended to act fromE′ to E as follows:

f ′(xn|xn−1) =





f(xn|xn−1) xn−1 ∈ E

γ(xn)/Γ xn−1 = s
,

and the survival probability extended toE′ as:

p′S(x) =





pS(x) x ∈ E

1 x = s
.

The specification of the PHD recursion as per (3)–(5) is of interest because (as we shall see in Section V) it allows

one iteration of the PHD predict/update operation to be written in a fashion which can be approximated directly

using auxiliary SMC techniques. The idea of the ‘source’ state will allow the predicted intensity from the previous

iteration and birth intensity to be dealt with in a unified sampling scheme, due to the form of (3).

Whilst the PHD filter reduces the dimensionality of the problem, the PHD recursion still involves intractable

integrals in many cases of interest, the exception being the‘linear–Gaussian’ case, where the PHD has a Gaussian

mixture form, [27]. We subsequently refer to this case as theGM-PHD filter. However, in this case the number

of mixture components increases over time. Therefore, in order to bound the computational cost per iteration

of the filtering algorithm, a pruning/merging technique is typically employed [27]. The error arising from this

pruning/merging was quantified in [28]. One practical advantage of the GM-PHD filter is that it readily admits

an heuristic for state–estimation: estimates can be extracted directly from the means of the Gaussian mixture

components, which (post–pruning) correspond to local, butsignificant maxima of the intensity function.

PHD filter analogs of the EKF and UKF have also been developed for use in non–linear models . These methods

rely on some deterministic approximation, (local linearization of the model in case of the EKF and weighted point

approximations of moments in the case of the UKF) and as such will always exhibit some degree of bias relative

to the corresponding true PHD recursion. However, in mildlynonlinear scenarios they have been shown to perform

well in practice and can be computationally inexpensive [27].

As introduced in Section I, the CPHD filter propagates a probability distribution over the number of hidden targets

in addition to the PHD itself. It has been demonstrated that this approach can produce more reliable estimates of the

number of hidden targets. Furthermore, it can be combined with the Gaussian mixture and EKF/UKF techniques

described above [29].
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In general non-linear scenarios, numerical methods which permit an arbitrarily close approximation of the true

PHD are attractive. Monte Carlo methods are one class of suchmethods and the next section introduces some of

their characteristics.

III. SEQUENTIAL MONTE CARLO

Sequential Monte Carlo methods have become a standard tool for computation in non-linear optimal filtering

problems and in this context have been termedparticle filters. We do not give explicit details of standard particle

filtering algorithms here, but rather provide the followingsummary and refer to [10] and [30] for a variety of

algorithms, theoretical details and applications, [31] for a general framework and [32] for underlying Monte Carlo

methods. SMC algorithms may be viewed as being constructed from ideas of Sequential Importance Sampling

(SIS) and resampling. They recursively propagate a set of weighted random samples calledparticles, which are

used to approximate a sequence of probability distributions. The algorithms are such that, as the number of particles

tends to infinity and under weak assumptions, an integral with respect to the distribution defined by the particle set

converges to the integral with respect to the correspondingtrue distribution.

A typical SMC algorithm consists of recursively proposing samples from some instrumental distribution and

computing importance weights which account for the discrepancy between the instrumental distribution and the

distribution of interest. Occasionally, resampling from the distribution defined by the particle set is performed. This

resampling step involves duplicating particles with high weights and discarding particles with low weights. It is

crucial in stabilizing the algorithm, as without it an SIS scheme would rapidly degenerate, carrying all weight on

a single particle and thus becoming useless for online estimation. Estimates drawn from such an algorithm would

typically have very high variance. Treatments of this issuefrom a theoretical point of view are given in [33], [34]

and a comprehensive study of the underlying theory can be found in the book length volume [35].

As mentioned in the introduction, SMC methods can be computationally very expensive when targeting the full

Bayesian multi-target posterior because of the high-dimension of the space on which the filtering distribution is

defined. This expense arises from the need to use more particles to combat an increase in estimator variance which

is, in essence, caused by the same phenomenon of weight degeneracy which occurs when applying sequential

importance sampling in high dimensions (albeit occurring at single iterations of the algorithm).

A generic and practical strategy by which to achieve efficiency in an SMC scheme is to ensure that the variance

of the importance weights is minimised [36]. This is important even in low dimensions. If the variance of the

importance weights is large, despite resampling, the algorithm will suffer from the same problem of importance

weight degeneracy. Therefore an important factor in the practical efficiency of SMC methods is the mechanism

by which particles are proposed. If degeneracy of the weights is to be avoided, this mechanism should take into

account information from the observations and drive particles into regions of high probability under the target

distribution. TheBootstrapparticle filter, [37], proposes particles from the transition kernel of the hidden process

in the state-space model, and resamples at every iteration.As it does not take into account information from the

observations, it is typically inefficient and large numbersof particles are required if reliable estimates are to be
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obtained from it.

The Auxiliary Particle Filter (APF) of Pitt and Shephard, [22], selects particles for propagation on the basis of

how well matched they are to the observation at the next time step, with the aim of reducing the variance of the

importance weights. The method originally took its name from a set of auxiliary variables introduced to index

the particle set and in [38] it was noted that the scheme has a proposal distribution of the same form as standard

particle filtering algorithms. More recently, in Johansen and Doucet, [39], the APF was reinterpreted as a sequential

importance sampling/resampling (SISR) algorithm targeting an auxiliary sequence of distributions, with importance

weights correcting for the discrepancy between these distributions and the distributions of interest. Thus the selection

of particles arises simply from applying resampling to a particle set subject to a set of auxiliary importance weights.

In the following sections we present an algorithm which applies ideas from the APF to the implementation of the

PHD filter.

IV. PARTICLE PHD FILTER

A particle implementation of the PHD filter in its full generality was proposed in [19], around the same time

as two other independent works [20] and [21]. In [20], only the special case without clutter was considered. On

the other hand, [21] describes an implementation for the special case with neither birth nor spawning. The theme

common to these approaches is the propagation of a particle approximation to the intensity function through the

PHD recursion (1) and (2).

One iteration of existing particle PHD filters is outlined asfollows. Samples are drawn from a proposal distribution,

conditionally upon the previous particle set, and weightedin accordance with the prediction operation. Supplemen-

tary particles dedicated to the birth term are then added. This yields an approximation to the predicted intensity

αn, which is used in its entirety to approximate the integrals of the form
∫

E
ψn,p(x)αn(x)dx in the denominators

of (2). The particles are then re-weighted according to the update operator and resampling is performed. The total

weight of the particle set must be maintained and it yields anestimate of total number of targets inE.

In this framework it is not obvious how to choose the proposaldistribution in order to minimise the variance of

the weights. In practice, proposals are often made from the prior, which is sub-optimal, and this is the analogue of

the Bootstrap particle filter, which is inefficient.

The particle implementation scheme of [21] includes regularization. This idea involves resampling not from the

weighted particle set, but from an absolutely continuous probability distribution defined by convolving the particle

set (or subsets thereof, obtained by clustering) with a kernel. This idea has been applied to SMC algorithms in

the context of optimal filtering with the aim of increasing diversity of particle locations and the stability over time

of the algorithm, see for example [37], [40] and references therein. It should be noted that regularization does

not employ information from the next observation to guide the selection or proposal of particles, in contrast to

the method proposed below. We note that it is possible to combine regularization and local resampling with the

proposed scheme, although we do not explore this idea further here.
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Convergence results establishing the theoretical validity of the particle PHD filter have been obtained in [24],

[41] and [42].

V. AUXILIARY PARTICLE PHD FILTER

A. Outline of the Approach

In the APF, particles are selected for propagation on the basis of how well they explain the next observation. We

employ this idea but with an extra selection step that first selects the observations that are explained by the particle

set as a whole. We will perform sampling on a higher dimensional space than existing implementations, but doing

so will allow us to:

(A1) Manage efficiently a fixed particle budget by concentrating effort on those observations which most

probably originate from true targets and therefore contribute most significantly to the r.h.s. of (2).

(A2) Employ a particle selection scheme which takes into account observations, as in the APF.

(A3) Tailor the distributions from which samples are drawn to the observations using existing techniques from

the SMC literature.

To pave the way towards the proposed algorithm, we next consider an hypothetical, static IS problem which is

modified in the next section to yield a recursive algorithm.

Consider the problem of estimating the following integral:

ϕ̄ =

∫

E

ϕ(xn)α̂n(xn)dxn, (6)

whereϕ is some suitable test function onE. Assuming (for now) that the normalizing constants{Zn,p}
mn

p=1, are

known, a Monte Carlo estimate of (6) may hypothetically be built using the following importance sampling (IS)

identity onE × E′ ×Mn andE × E′. This is just a re-writing of (1) and (2), using the notation on the extended

state spaceE′, (3)–(5):

ϕ̄ =

mn∑

p=1

∫

E

∫

E′

ϕ(xn)
ψn,p(xn)

Zn,p

f ′(xn|xn−1)p
′
S(xn−1)α̂

′
n−1(xn−1)

q
(1)
n (xn, xn−1, p)

q(1)n (xn, xn−1, p)dxn−1dxn

+

∫

E

∫

E′

ϕ(xn)
[1− pD(xn)]f ′(xn|xn−1)p

′
S(xn−1)α̂

′
n−1(xn−1)

q
(2)
n (xn, xn−1)

q(2)n (xn, xn−1)dxn−1dxn, (7)

whereq(1)n (xn, xn−1, p) andq(2)n (xn, xn−1) are probability densities onE × E′ ×Mn andE × E′ respectively.

The idea behind the proposed SMC algorithm is to target (7) using IS. We note that there are several ways in

which the integral (6) could be decomposed and targeted using IS. For example, one could attempt to evaluate

the summation in the first term on the r.h.s. of (7) analytically, as opposed to sampling over observation indices.

However, the decomposition in (8) has been chosen for a specific reason related to point (A1). The discussion to

follow expands on this.

We focus on proposal distributions of the following form, assumed to have support such that (7) is valid:
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q(1)n (xn, xn−1, p) = q(1)n (xn|xn−1, p)
V

(1)
n,p (xn−1)α̂

′
n−1(xn−1)

∫
E′
V

(1)
n,p (xn−1)α̂′

n−1(xn−1)dxn−1

q(1)n (p),

q(2)n (xn, xn−1) = q(2)n (xn|xn−1)
V

(2)
n (xn−1)α̂

′
n−1(xn−1)

∫
E′
V

(2)
n (xn−1)α̂′

n−1(xn−1)dxn−1

,

where for eachp, V (1)
n,p : E′ → R

+ andV (2)
n : E′ → R

+ are bounded potential functions. Each of these functions

is related to the concept of the ‘first-stage’ weight in the APF, whose calculation involves evaluating a potential

function at sample locations. This parallel is made more apparent in the sequel. The rationale behind this approach

is that it is possible to achieve performance which is superior to that of existing SMC implementations of the PHD

filter by building a proposal distribution in terms of the updated intensity (or its particle approximation) from the

previous time step.

We can then drawN (1) independent, identically distributed (iid) samples,{X(i)
n,1,X

(i)
n−1,1, P

(i)
n,1}

N(1)

i=1 from q
(1)
n (xn, xn−1, p),

N (2) iid samples,{X(i)
n,2,X

(i)
n−1,2}

N(2)

i=1 from q
(2)
n (xn, xn−1) and form the following estimator of̄ϕ:

ϕ̃ =

N(1)∑

i=1

ϕ(X
(i)
n,1)w

(1)
n (X

(i)
n,1,X

(i)
n−1,1, P

(i)
n,1) +

N(2)∑

i=1

ϕ(X
(i)
n,2)w

(2)
n (X

(i)
n,2,X

(i)
n−1,2) (8)

where the importance weights are given by:

w(1)
n (xn, xn−1, p) =

1

N (1)

1

Zn,p

ψn,p(xn)f ′(xn|xn−1)p
′
S(xn−1)α

′
n−1(xn−1)

q
(1)
n (xn, xn−1, p)

(9)

=
1

N (1)

1

Zn,p

∫
E′
V

(1)
n,p (xn−1)α̂

′
n−1(xn−1)dxn−1

q
(1)
n (p)

×
ψn,p(xn)f ′(xn|xn−1)p

′
S(xn−1)

q
(1)
n (xn|xn−1, p)V

(1)
n,p (xn−1)

, (10)

and

w(2)
n (xn, xn−1) =

1

N (2)

[1− pD(xn)]f ′(xn|xn−1)p
′
S(xn−1)α

′
n−1(xn−1)

q
(2)
n (xn, xn−1)

(11)

=
1

N (2)

∫

E′

V (2)
n (xn−1)α̂

′
n−1(xn−1)dxn−1

×
[1− pD(xn)]f ′(xn|xn−1)p

′
S(xn−1)

q
(2)
n (xn|xn−1)V

(2)
n (xn−1)

. (12)

1) Optimal Proposal Distributions:As previously described, a generic scheme for ensuring thatour estimator

does not have high variance is to minimise the variance of theimportance weights. The following proposition

establishes the choice of proposal distributions which areoptimal in this sense.

Proposition 1: The following choices minimise the variance of the importance weights,w(1)
n (Xn,Xn−1, Pn) and

w
(2)
n (Xn,Xn−1):
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q(1),opt
n (p) ∝

1

Zn,p

∫
V (1),opt

n,p (xn−1)α̂
′
n−1(xn−1)dxn−1,

V (1),opt
n,p (xn−1) =

∫

E

ψn,p(xn)f ′(xn|xn−1)p
′
S(xn−1)dxn,

q(1),opt
n (xn|xn−1, p) =

ψn,p(xn)f ′(xn|xn−1)p
′
S(xn−1)∫

E
ψn,p(xn)f ′(xn|xn−1)p′S(xn−1)dxn

,

V (2),opt
n (xn−1) =

∫

E

[1− pD(xn)]f ′(xn|xn−1)p
′
S(xn−1)dxn,

q(2),opt
n (xn|xn−1) =

[1− pD(xn)]f ′(xn|xn−1)p
′
S(xn−1)∫

E
[1− pD(xn)]f ′(xn|xn−1)p′S(xn−1)dxn

, (13)

and in this case the estimator becomes:

ϕ̃n =

∑mn

p=1
1

Zn,p

∫
E′
V

(1),opt
n,p (xn−1)α̂

′
n−1(xn−1)dxn−1

N (1)

N(1)∑

i=1

ϕ(X
(i)
n,1)

+

∫
E′
V

(2),opt
n (xn−1)α̂

′
n−1(xn−1)dxn−1

N (2)

N(2)∑

i=1

ϕ(X
(i)
n,2).

Proof: Substitution readily yields that in the case of employing the optimal proposal distributions, the variances

of the weights (9) and (11) are both zero, as the importance weights are of the form:

w(1)
n (xn, xn−1,m) =

1

N (1)

mn∑

p=1

1

Zn,p

∫

E′

V (1),opt
n,p (xn−1)α̂

′
n−1(xn−1)dxn−1,

and

w(2)
n (xn, xn−1) =

1

N (2)

∫

E′

V (2),opt
n (xn−1)α̂

′
n−1(xn−1)dxn−1,

which do not depend onxn, xn−1 or m.

Corollary 1: For a total ofN = N (1)+N (2) samples, and when the optimal proposal distributions are employed,

the importance weights are of zero variance and are all equalin the case that:

N (1) ∝ N ×
mn∑

p=1

1

Zn,p

∫

E′

V (1),opt
n,p (xn−1)α̂

′
n−1(xn−1)dxn−1

N (2) ∝ N ×

∫

E′

V (2),opt
n,p (xn−1)α̂

′
n−1(xn−1)dxn−1

Note that the optimal choice of proposal distributions correspond to denominators of the two rightmost terms in

(10) and (12) being matched to their respective numerators.This is precisely as in the APF and has the following

interpretation. Givenp, we choose the particle from timen− 1 that has a high weight and can explainyn,p well.

This particle is then propagated forward via the optimal proposal for this observation, which isq(1),opt
n (xn|xn−1, p).

Similarly if we matchq(1)n (p) to the first term on the r.h.s. of (10), the weight contribution of that term will be

independent ofp. Choosingq(1)n (p) in this manner, as formalised below, amounts to selecting observations according
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to the strength of the hypothesis that they are target generated. More specifically, the optimal proposal distribution,

q
(1),opt
n (p), has a probabilistic interpretation in terms of the spatialPP theory underlying the PHD recursion, see

[3]. For convenience we reproduce the relevant aspects of the model from which the the PHD recursion is derived.

Consider a spatial Poisson processX = X1:K , where eachX is random point in a state spaceE. Denote the

intensity of X by αn(x) and consider the following observation model. With probability pD(x), each point of

X generates a noisy observation in an observation spaceF through a kernel with densityg(y|x). This happens

independently for each point inX. Let Θ denote the set of observations generated by points inX. In addition to

these detected points, clutter points from an independent Poisson process onF , denoted byK, with intensityκ(y),

are also observed. Denote byY the superposition ofΘ andK.

Proposition 2: Let X be a Poisson process as above, with intensityαn(x). Then given a realization of observa-

tions, yn = yn,1:mn
, according to the model described above,q

(1),opt
n (p) as defined in (13) is proportional to the

the posterior probability that thepth observed point,yn,p, originates from a hidden target.

Proof: The proof is adapted from [3] and involves the concept of marking a Poisson process, see [26][pp. 55]

for a definition. LetX̂ be the points ofX that generate observations. Because points ofX generate observations

independently with location dependent probabilitypD(x), it follows that X̂ is a Poisson process with intensity

pD(x)αn(x) [26][pp. 56]. LetZ be a PP onE × F comprised of points(X,Y ), with the set of first coordinates

given by the restriction ofX to points that generate observations, i.e.,X̂, and the second coordinates given by the

corresponding observations. By the Marking Theorem [26][pp. 55],Z is Poisson with intensitypD(x)αn(x)g(y|x).

We now define three new marked PP’s with position spaceF and mark spacěE = E ∪ {∆} where{∆} is an

isolated one-point set which is not an element ofE.

Firstly, defineΞ1 to be a marked PP, where the point positions ofΞ1 are given byK (the clutter process), and

every point inΞ1 carries∆ as its mark. It follows thatΞ1 is Poisson onF × {∆}. Secondly, defineΞ2 to be

{(Y,X) : (X,Y ) ∈ Z}. SinceZ is Poisson, the process defined by swapping its first and second coordinates is also

a Poisson process. Thirdly, denote byΞ the superposition ofΞ1 and Ξ2. The superposition of two independent

Poisson processes also yields a Poisson process with intensity being the sum of the two [26]. ThusΞ is Poisson

on F × Ě with intensityv(y, x) given by:

v(y, x) =






g(y|x)pD(x)αn(x) x ∈ E,

κ(y) x = ∆,

with the abuse of notation thatx is a point inĚ. Note that the second coordinate of a point of a Poisson process on

a product space can be viewed as a mark. The mark distributionµ(x|y) for Ξ, which is the conditional distribution

of the mark of a point, given its locationy, is given by:

µ(x|y) =
v(y, x)

Zn(y)
,
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where,

Zn(y) =

∫
g(y|x)pD(x)αn(x)dx+ κ(y).

The mark distribution is to be interpreted as follows: with probability 1 − κ(y)/Zn(y) a mark inE is generated

according to the probability densityg(y|x)pD(x)αn(x)/
∫
g(y|x)pD(x)αn(x)dx. Otherwise the mark∆ is chosen.

The proof is then complete since conditioned onyn, the marks are independent and distributed according to
∏mn

p=1 µ(x|yn,p), and therefore the posterior probability that an observed point yn,p originates fromX is given by:

1−
κ(yn,p)

Zn(yn,p)
=

∫
E
g(yn,p|x)pD(x)αn(x)dx∫

E
g(yn,p|x)pD(x)αn(x)dx+ κ(yn,p)

∝ q(1),opt
n (p).

Thus sampling fromq(1),opt
n (p) allocates more particles to those observations which have ahigh posterior

probability of originating from hidden targets, achievingpoint (A1).

2) Variance Reduction:The variance of the estimator (8) can be reduced by the application of alternative methods

to sample fromq(1)n (p). For example, the residual, stratified and systematic sampling mechanisms (commonly used

to resample from the particle set in SMC methods) could be applied. See [43], [44], and references therein. These

methods are adopted in section VI.

B. Proposed Algorithm

To progress from the IS identity (7) to a practical recursivealgorithm targeting the sequence of updated intensity

functions{α̂n(xn)}n≥0, we need some modifications.

Assume that at timen − 1 we have available a particle approximation tôαn−1, denotedα̂N
n−1(dxn−1) =

∑N

i=1W
(i)
n−1δX(i)

n−1

(dxn−1), in the sense that for some suitable test functionϕ:

∫

E

ϕ(x)α̂N
n−1(dx)

a.s.
−−−−→
N→∞

∫

E

ϕ(x)α̂n−1(dx). (14)

Also denote the extended particle particle approximation on E′ by:

α̂N ′

n−1(dxn−1) = α̂N
n−1(dxn−1) + Γδs(dxn−1)

We modify the target integral (7) by replacinĝαn−1 with its particle approximation. The proposal distributions are

also modified, as follows:

q(1)n (dxn−1|p) =

∑N

i=1 V
(1)
n,p (x

(i)
n−1)w

(i)
n−1δx(i)

n−1

(dxn−1) + V
(1)
n,p (s)Γδs(dxn−1)

∑N

i=1 V
(1)
n,p (x

(i)
n−1)w

(i)
n−1 + V

(1)
n,p (s)Γ

,

q(2)n (dxn−1) =

∑N
i=1 V

(2)
n (x

(i)
n−1)w

(i)
n−1δx(i)

n−1

(dxn−1) + V
(2)
n (s)Γδs(dxn−1)

∑N

i=1 V
(2)
n (x

(i)
n−1)w

(i)
n−1 + V

(2)
n (s)Γ

.
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Thus sampling fromq(1)n (dxn−1|p) andq(2)n (dxn−1) now amounts to resampling from the union of the re-weighted

particle set and an atom representing the birth mass. This isanalogous to first stage sampling in the APF, achieving

point (A2). Intuitively, oncep is chosen, a particle from timen−1 is chosen to be propagated forward on the basis

of its current weight and how well it explainsyn,p, taking into consideration survival and detection probabilities.

Comments on the practical choices of other elements of the proposal distributions are made below.

In the hypothetical IS integral (7), it was assumed that the normalizing constants{Zn,p}
mn

p=1, were known. In

practice this is not the case, and we need to estimate them too. For eachZn,p, this can be achieved using theN (1)
p

particles were sampled fromq(1)n (xn, xn−1|p). In principle, we could alternatively estimateZn,p using the other

particles as well, but when the observations are well separated this will be inefficient as such particles would make

very little contribution to the estimate. From the definition of Zn,p we therefore construct the following IS identity:

Zn,p =

∫

E′

∫

E

ψn,p(xn)f ′(xn|xn−1)p
′
S(xn−1)α̂

′
n−1(xn−1)

q
(1)
n (xn, xn−1|p)

q(1)n (xn, xn−1|p)dxndxn−1 + κ(yn,p),

and the corresponding estimator:

Z̃n,p =

∫
V

(1)
n,p (x)α̂N ′

n−1(dx)

N
(1)
p

∑

i∈Tn,p

ψn,p(X
(i)
n,1)f

′(X
(i)
n,1|X

(i)
n−1,1)p

′
S(X

(i)
n−1,1)

q
(1)
n (X

(i)
n,1|X

(i)
n−1,1, p)V

(1)
n,p (X

(i)
n−1,1)

+ κ(yn,p) (15)

whereTn,p = {i : P
(i)
n,1 = p}, N (1)

p = card(Tn,p). This estimate of the normalizing constant is used in the place of

its true value in the importance weights, (10), (12), which become:

w(1)
n (xn, xn−1, p) =

1

N (1)

1

Z̃n,p

∫
E′
V

(1)
n,p (xn−1)α̂

N ′

n−1(dxn−1)

q
(1)
n (p)

×
ψn,p(xn)f ′(xn|xn−1)p

′
S(xn−1)

q
(1)
n (xn|xn−1, p)V

(1)
n,p (xn−1)

, (16)

and

w(2)
n (xn, xn−1) =

1

N (2)

∫

E′

V (2)
n (xn−1)α̂

N ′

n−1(dxn−1)

×
[1− pD(xn)]f ′(xn|xn−1)p

′
S(xn−1)

q
(2)
n (xn|xn−1)V

(2)
n (xn−1)

. (17)

Note that in practice we need not compute (15) for anyp such thatN (1)
p = 0.

C. Design of Proposal Distributions

The optimal choices,V (1),opt
n,p (xn−1), q

(1),opt
n (xn|xn−1, p) and V (2),opt

n (xn−1), q
(2),opt
n (xn|xn−1), may often not

be available in practice.

The fact that the sampling scheme conditions on observationindices means thatq(1),opt
n (xn|xn−1, p) is of the

form:

q(1),opt
n (xn|xn−1, p) ∝ ψn,p(xn)f ′(xn|xn−1).
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In order to approximateq(1),opt
n (xn|xn−1, p) it is possible to use techniques commonly applied in conjunction

with the standard particle filter, such as local-linearization of the dynamical model, Laplace approximations or the

Unscented Transform (UT). Therefore point(A3) is achieved. See [36], [45] for several possibilities and section

VI for specific details of use of the UT.

One possible strategy for choosingV (1)
n,p (xn−1), originating from [22], is to approximate

∫
ψn,p(xn)f ′(xn|xn−1)dxn

with ψn,p(µn(xn−1)), whereµn(xn−1) is the mean or mode off ′(xn|xn−1). However, it was pointed out in [39] that

such an approach can lead to an estimator with high variance,because the approximation may be too concentrated

relative toV (1),opt
n,p (xn−1). To address this problem we could apply tempering to the particle set once it has been

re-weighted by the potential function and set:

q(1)n (dxn−1|p) =

∑N
i=1[V

(1)
n,p (x

(i)
n−1)w

(i)
n−1]

ǫδ
x
(i)
n−1

(dxn−1) + [V
(1)
n,p (s)Γ]ǫδs(dxn−1)

∑N

i=1[V
(1)
n,p (x

(i)
n−1)w

(i)
n−1]

ǫ + [V
(1)
n,p (s)Γ]ǫ

where0 < ǫ < 1. Similar techniques can be applied to approximateV
(2),opt
n (xn−1). Other suggestions can be found

in [39], [45].

The optimal choice of distribution over observation indices, q(1)n (p), may not be available in practice (outside the

‘linear–Gaussian case’), as it involves the unknown normalizing constants,{Zn,p}
mn

p=1, which are to be estimated

after having sampled fromq(1)n (p). However, sensible approximation of this optimal distribution can still yield good

performance. For example, having used one of the above methods to approximate theV (1),opt
n,p (xn−1), we could

choose:

q(1)n (p) ∝

∫
E′
V

(1)
n,p (x)α̂N ′

n−1(dx)∫
E′
V

(1)
n,p (x)α̂N ′

n−1(dx) + κ(yn,p)
. (18)

The same issue of high estimator variance due to over-concentrated proposal distributions may arise here, and in

practice a similar tempering approach may be necessary.

The algorithm for the auxiliary particle PHD filter is given below, with k0 being the expected initial number of

targets. The computational complexity of the algorithm isO(mnN) at thenth iteration.

VI. SIMULATION STUDY

We present simulation results to demonstrate the improvements in performance over existing PHD filtering

algorithms which are possible under the proposed scheme.

Consider a constant velocity tracking model for a vehicle whose position is specified in two dimensions,

restricted to the window[0, 100] × [0, 100]. The state of a single target is specified by a4 dimensional vector

xn = [xn,1 xn,2;xn,3 xn,4]
T ; [xn,1 xn,3]

T specifies position and[xn,2 xn,4]
T specifies velocity. The target dynamics

are defined by:
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1: n = 0

2: for i = 1 to N do

3: x
(i)
1 ∼ q0(x)

4: w
(i)
1 = 1

N
k0

5: end for

6: n← n+ 1

7: for i = 1 to N (1) do

8: P
(i)
n,1 ∼ q

(1)
n (p)

9: X
(i)
n−1,1 ∼ q

(1)
n (xn−1|p

(i)
n,1)

10: X
(i)
n,1 ∼ q

(1)
n (xn|x

(i)
n−1,1, p

(i)
n,1)

11: end for

12: for i = 1 to N (2) do

13: X
(i)
n−1,2 ∼ q

(2)
n (xn−1)

14: X
(i)
n,2 ∼ q

(2)
n (xn|x

(i)
n−1,2)

15: end for

16: for p = 1 to mn do

17: if N (1)
p > 0 then

18: computeZ̃n,p as per equation (15)

19: end if

20: end for

21: for i = 1 to N (1) do

22: computeW (i)
n,1 = w

(1)
n (X

(i)
n,1,X

(i)
n−1,1, P

(i)
n,1) as per equation (16)

23: end for

24: for i = 1 to N (2) do

25: computeW (i)
n,2 = w

(2)
n (X

(i)
n,2,X

(i)
n−1,2) as per equation (17)

26: end for

27: obtain{W (i)
n ,X

(i)
n }Ni=1 by taking the union of{W (i)

n,1,X
(i)
n,1}

N1
i=1 and{W (i)

n,2,X
(i)
n,2}

N2
i=1, and relabelling

28: the empirical measurêαN
n (dxn) =

∑N

i=1W
(i)
n δ

X
(i)
n

(dxn) approximateŝαn(dxn)

29: Goto 6

Fig. 1. Auxiliary SMC PHD algorithm
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xn =





1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1




xn−1 +





v1

v2

v3

v4





wherev1, v3 andv2, v4 are i.i.d. zero mean Gaussian with standard deviationσx,1 = 0.02 andv2, v4 are i.i.d. zero

mean Gaussian with standard deviationσx,2 = 0.3. Probability of survival is setpS = 0.98 and the birth intensity

is defined asγ = 0.2N (·;xb,Σb), where:

xb =





30

0

30

0




, Σb =





9 0 0 0

0 1 0 0

0 0 9 0

0 0 0 1




(19)

A. Example 1

In this first example, for illustrative purposes only, the position of the target is observed in additive, isotropic

Gaussian noise with standard deviationσz = 0.2. Ground truth data is shown in Fig. (3). We explore two clutter

scenarios. In both scenarios, the clutter intensity is set uniform on [0, 100] × [0, 100]. In the first caseκ = 0.001,

corresponding to an average of10 clutter points per scan, and in the second caseκ = 0.005, corresponding to an

average number of50 clutter points per scan. In both cases we setpD = 0.99.

While the structure of this model is simple, the low observation noise is a challenge for SMC algorithms. The

localization of the likelihood means that blind proposals have little chance of putting particles in regions of high

weight.

In the two clutter scenarios we tested the reliability of theproposed algorithm relative to the bootstrap PHD

filter, by repeatedly running the algorithm over fixed observation records generated from the model. In both cases

the GM–PHD filter of [27] was used to compute a ‘baseline’ result. This essentially allows the performance of

the SMC algorithms to be tested against a very close approximation of the true PHD filter for this model. For

the GM–PHD algorithm, the total number of mixture components was set to100, the merging radius was set to4

and the pruning threshold was set to10−5. It was found that using more conservative values did not significantly

change the performance of the algorithm.

In the two scenarios, due to the linear–Gaussian nature of the model, it is possible to employ the optimal proposal

distributions described in section V, where in the case ofq
(1),opt
n (p), α̂N

n−1 used in place of̂αn−1. It is also possible

to employ the optimal particle allocation of Corollary1, with N (2) rounded up to the nearest integer. Againα̂N
n−1

was used in place of̂αn−1 for computation ofN (1) andN (2).

1) Low Clutter: In the low clutter scenario, the two SMC algorithms were implemented withN = 500 particles,

with 170 allocated to births for the bootstrap algorithm. Both algorithms were initialized withk0 = 2, sampling

from N (·;xb,Σb).
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In order to demonstrate the superior performance of the proposed algorithm we focus on two characteristics of

the particle set: its total mass at each iteration and the Effective Sample Size - a standard quantity for assessing

the efficiency of SMC algorithms (further details given below).

We first discuss results for the low clutter scenario. Fig. (2) shows images of normalized histograms of the total

mass of the particle set for the bootstrap and auxiliary algorithms. The observation record was of lengthn = 40.

For each image, a vertical strip corresponding to a single time index shows a normalized histogram of the total

mass of the particle set, over100 independent runs of the algorithm. The darker the pixel, themore frequently the

total mass took the corresponding value. Super–imposed is the true number of targets (dashed line) and the total

mass of the PHD computed using the GM–PHD filter (solid line) pre–pruning/merging. It should also be noted that

the total mass of the the particle set is independent of whatever heuristic clustering device is used to extract target

state estimates. Thus we concentrate on the efficiency of theSMC techniques.

There are two important features to note. Firstly, the imagefor the bootstrap algorithm indicates greater variation

in the output of the algorithm across independent runs, compared to the auxiliary algorithm. Secondly, the bootstrap

algorithm frequently under-estimates the number of targets between time steps20 and40 as during these iterations

the total mass of the particle set if very frequently lower than the true number of targets present. This is due to

the bootstrap algorithm loosing track of targets and failing to identify the birth of a target atn = 11. By contrast,

the auxiliary algorithm is able to track reliably all the targets. It also more closely follows the total mass computed

using the GM–PHD filter.

The total mass of the GM–PHD filter is generally slightly higher than that obtained from the SMC algorithms. We

conjecture that in the case of this model the GM–PHD filter is able to accurately represent the large number of small

modes in the true PHD. The SMC methods often neglect these smaller modes, with particles concentrated on the

more significant modes. We further conjecture that the peaksin the total mass of the intensity can be explained as

follows. Any observation which is made close to the birth region contributes positive mass to the updated intensity,

irrespective of whether or not it originates from a hidden target. As pointed out by one anonymous reviewer, using

a lower value ofΓ might reduce this effect.

We note that it is recommended in [27] that the mixture components in the GM–PHD filter should be thresholded

according to their weight post pruning/merging, in order toestimate the number of targets present. We have chosen

to show the total mass pre–thresholding, as the aim of this example is to show how well the proposed algorithm

approximates the true PHD.

As noted in section II, the peaks in the intensity function can be used to obtain state estimates for individual targets.

In existing particle implementations of the PHD filter, thisrequires heuristic clustering of the particles, followed by

estimation within each cluster. For the auxiliary particlePHD filter, there is a natural (albeit still heuristic) method

which can be employed to this end without the increased computational cost of employing a clustering algorithm.

This consists of simply computing estimates from particlesclustered by common values ofP (i)
n . An estimate is

taken when the total weight of the cluster exceeds some threshold, e.g.0.5. This method can be expected to work

well when the clutter intensity is not too high. For each observation with a positive number of particles assigned to
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Fig. 2. Low clutter scenario. Normalized histograms of the total mass of the particle set. Each vertical strip in the image corresponds to

a normalized histogram of the total mass of the particle set at that time index, averaged over100 independent runs of the algorithm. Left:

Bootstrap filter. Right: Auxiliary filter. Superimposed plots in both cases show the true number of targets (dashed) and thetotal mass of the

updated intensity computed by the GM–PHD algorithm (solid).
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Fig. 3. Low clutter scenario. Ground truth target positions(solid line) and state estimates (crosses) for auxiliary filter. 10 clutter points per

scan.
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Fig. 4. Low clutter scenario. Effective sample size versus iteration of the algorithm, averaged over 100 runs withN = 500 particles. Dashed:

Auxiliary filter. Solid: Bootstrap filter.10 clutter points per scan.
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Fig. 5. High clutter scenario. Normalized histograms of the total mass of the particle set. Each vertical strip in the image corresponds to

a normalized histogram of the total mass of the particle set at that time index, averaged over100 independent runs of the algorithm. Left:

Bootstrap filter. Right: Auxiliary filter. Superimposed plots in both cases show the true number of targets (dashed) and thetotal mass of the

updated intensity computed by the GM–PHD filter (solid).
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Fig. 6. High clutter scenario. Ground truth target positions (solid line) and state estimates (crosses) for auxiliary filter. 50 clutter points per

scan.
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Fig. 7. High clutter scenario. Effective sample size versus iteration of the algorithm, averaged over 100 runs withN = 3000 particles. Dashed:

Auxiliary filter. Solid: Bootstrap filter.50 clutter points per scan.
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it, a state estimate can be obtained by normalizing the weights of the corresponding particles and taking the weighted

mean of the particle locations. This method for state estimation bares some similarities to that proposed for the

GM-PHD filter in [27]: in the latter case, state estimates aredrawn from individual Gaussian mixture components

(after thresholding by mass), each of which is associated with an observation indexp ∈ {1, ...,mn}.

Estimates computed using the proposed clustering method for a single run of the auxiliary particle algorithm in

the low clutter scenario are shown in Fig. (3). The solid lines in this plot show the true position trajectories from

which the observations were generated.

Secondly, the effective sample size (ESS), introduced in [33], provides a measure of the degeneracy of the

importance weights. It has a maximum value equal to the totalnumber of particles. In practice, the ESS may not

be evaluated exactly but it can be estimated from the particle set as follows:

N̂eff =
1

∑N

i=1(ŵ
(i)
n )2

,

where{ŵ(i)
n }Ni=1 are the normalised importance weights. When the ESS is small,SMC algorithms can collapse

giving very high variance estimators.

Fig. (7) shows the ESS of the normalized particle sets, calculated at each iteration and then averaged across the

100 runs. As the auxiliary algorithm uses the optimal proposal distributions the variation of the importance weights

is tiny (in fact the only variation occurs becauseN (2) is rounded up to the nearest integer). At all iterations, the

average ESS for the bootstrap algorithm is lower than that for the auxiliary algorithm.

In terms of computational cost, the proposed algorithm was found to be similar to the bootstrap algorithm. In

general, the auxiliary approach incurs costs associated with computing the parameters of proposal distributions

which the bootstrap algorithm does not. However, this is balanced by the inexpensive state–estimation scheme

which can be employed with the auxiliary algorithm. Both SMCmethods are typically more expensive than the

GM-PHD algorithm, which does not involve random number generation.

2) High Clutter: In the high clutter scenario both algorithms hadN = 3000 of which 1000 were allocated to

births for the bootstrap algorithm. Both algorithms were initialized in the same manner as in the low clutter case.

We now discuss results in the high clutter scenario. The images of Fig. (5) again indicate that the proposed

algorithm is more reliable than the bootstrap algorithm: across100 independent runs the total mass of the particle

set exhibits less variation so the pixels in the image plot for the auxiliary algorithm are less ‘smeared–out’. As

in the low clutter scenario, the bootstrap algorithm frequently loses track of one target and so the total mass of

the particle set is often lower than the true number of targets between time indices20 and40. In the high clutter

scenario, the GM–PHD filter again accurately portrays many small modes in the true PHD so its total mass is again

higher than that of the SMC algorithms. In figure Fig. (7), theESS is again significantly higher for the auxiliary

algorithm compared to the bootstrap method. Position estimates obtained from the auxiliary algorithm using the

method described above are shown in Fig. 6.
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B. Example 2

In this second example, we use the same dynamical model and true data as in Example 1, but with a range and

bearing observation model:

y(r)
n =

√
x2

n,1 + x2
n,3 + un,r,

y(b)
n = arctan

(
xn,3

xn,1

)
+ un,b,

whereun,r andun,b are zero mean Gaussian disturbances of varianceσ2
r andσ2

b respectively.

For this challenging nonlinear observation model, we demonstrate the performance of the proposed algorithm

using the UT to approximate the optimal proposal distributions. The UT employs a set of deterministic weighted

points (calledsigma points) to capture the mean and covariance of a probability distribution. A Kalman recursion

can then be executed on these quantities yielding a deterministic approximation to the optimal filter, see [46], [12],

[47] for details.

We use the UT to approximate eachV (1),opt
n,p in the same manner that it is used to approximate the predictive

likelihood in [45]. This requires sigma points and associated weights to be calculated for each particle and the

mean of the normalized birth intensity, at each iteration. For eachp, qn(p) and q(1)n (dxn−1|p) are constructed in

terms of:

V (1)
n,p (x

(i)
n−1) =

ν∑

j=1

ψn,p(ζ
(i)
n−1,j)λ

(i)
n−1,j (20)

where{ζ(i)
n−1,j}

ν
j=1 and{λ(i)

n−1,j}
ν
j=1 are respectively the locations and weights of the sigma points which collectively

capture the mean and covariance off(xn|x
(i)
n−1) for the ith particle inαN

n−1(xn−1). The same procedure is also

carried out once at each iteration for the birth term to obtain V (1)
n,p (s) in terms of sigma points which capture the

characteristics ofγ(x)/Γ.

The value ofν is dictated by the UT. The scheme in [46] hasν = 2d+ 1 whered is the dimension ofE. In the

case of this example,ν = 9, which is dominated in order of magnitude by the total numberof particles employed.

Therefore the arithmetic operations involved in computingthe sigma points, the weights and (20) for each particle

do not significantly increase the overall computational expense of the algorithm.

Finally, the proposal distributionq(1)n (dxn|x
(i)
n−1, p) is obtained by passing the mean and covariance captured by

the sigma points ofx(i)
n−1 (the same point locations and weights which have already been computed) through the

update operation of the Kalman filtering recursion, usingψn,p(xn) as the likelihood function, see [12] for details.

This yields a Gaussian approximation toq(1),opt
n (dxn|x

(i)
n−1, p).

In this example we use the same dynamical noise variances andthe same birth intensity as in example1, (19).

The clutter intensity is set to be uniform over[0, 141]× [0, π/2], with an average of20 clutter points per scan. The

standard deviation of the bearing noise was set toσb = 0.002. We consider various values of theσr, the standard

deviation of the range observation noise and we setpD = 0.98 andpS = 0.98.
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We compare the proposed algorithm to the bootstrap SMC PHD filter and the UKF–type Gaussian Mixture (UKF–

GM) implementation of the PHD filter of [27]. For the latter weset the maximum number of mixture components

post pruning/merging to100, the merge radius to4 and the pruning threshold to10−5. We also use the scheme

advocated in [27] to extract point estimates: after pruning/merging, the means of mixture components with mass

greater than0.5 were taken as point position estimates. We note using different values for any of these parameters

did not significantly improve the performance of the algorithm.

Both SMC algorithms used a total of1500 particles, with500 being assigned to births in the bootstrap algorithm.

For the auxiliary algorithm we fixedN (2) = 150.

In order to compare the quality of the position estimates from the UKF–GM algorithms with those obtained from

the proposed algorithm, we computed the Wasserstein Distance (WD) between the set of point position estimates

and the true target positions at each iteration (see [48] forfurther information about this metric). For the proposed

algorithm, the natural clustering mechanism for obtainingstate estimates was employed, as described above.

Comparisons were made by computing the average WD over the40 iterations of the algorithm, for various values

of the range noise standard deviationσr. Results are presented in figure 8. Whenσr was small, it was found that

the UKF–GM filter worked well, but asσr was increased, its performance degraded.
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Fig. 8. Wasserstein distance between position estimates andtrue values versus range observation noise standard deviation, averaged over 40

iterations of algorithm. Dashed: Auxiliary filter. Solid: UKF–GM filter.

In order to better compare the reliability of the proposed algorithm to the UKF–GM and bootstrap algorithm, the

total mass of the corresponding approximations of the totalmass of the PHD were recorded over100 independent

runs of the algorithm, each with a different observation record and with fixedσr = 1.5. This allows us to portray

the robustness of the filtering algorithms to variation in observation records. Fig. (9) shows normalized histograms

of the total mass of the PHD from the three algorithms in the same format as the image plots in Example 1. Again,

a dark pixel indicates that the total mass of the PHD frequently took that value across runs of the algorithm. The

dashed line indicates the true number of targets. For this example, we are unable to compute the true PHD, due to

the non–linearity of the model.

The results for the bootstrap algorithm indicate that it is somewhat unreliable, with few dark pixels in the image

plots. As in Example 1, the total mass of the particle set is frequently less than the true number of targets between

time indices20 and40. For the UKF–GM filter, the total mass fluctuates widely across different observation records.

It seems reliable over early iterations, where the total mass frequently matches the true number of targets, but at
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subsequent iterations the total mass is often significantlylower than the true number of targets and at the later

iterations it appears to sometimes ‘lose–track’ altogether. For the auxiliary algorithm, the dark pixels indicate that

the total mass is frequently close to the true number of targets, although at later iterations the mass is occasionally

lower.

We note that there are fewer spikes in the total mass of the particle set compared to Example 1. However, in the

image plots of Example1 it should be noted that we considered a single fixed observation sequence, where as in

this example we consider results obtained over different observation records generated from the model. Hence the

small spikes in the PHD are averaged out and do not feature significantly in the image plots.

For further comparison of the proposed method with the bootstrap SMC algorithm we again compute the ESS

and average over100 runs of the algorithm. The results are shown in Fig. 10. The ESS is again higher for the

proposed method than for the bootstrap algorithm. The only significant transient features in the the ESS for the

proposed algorithm are after initialisation and aroundn = 11 when the third target appears.

Finally, position estimates obtained from the proposed algorithm are plotted in figure 11 along with the true

position trajectories. The same method for state extraction was used as described in Example 1.

VII. C ONCLUSIONS

We have introduced an auxiliary particle implementation ofthe PHD filter. The proposed scheme involves

auxiliary random variables which index observations and pre-selection of particles on a per-observation basis in a

manner similar to the APF. The resulting algorithm samples on a higher dimensional space than previous particle

implementations of the PHD filter, but doing so permits more efficient proposal mechanisms.

In SMC algorithms, it is importance to minimise the varianceof the importance weights in order to obtain

low-variance estimators. In existing implementations of the PHD filter it is not clear how to do so. We have

provided guidance on choices of proposal distributions which are optimal in this sense and provided interpretation

of them in terms of the PP model underlying the PHD recursion.Specifically, the value of the optimal proposal

distribution probability for an observation index has beenshown to be proportional to the posterior probability that

the corresponding observation originates from a true target, given a Poisson prior. The proposed method exhibits a

natural mechanism for clustering of particles on the basis of the observations to which they are assigned. This can

be used as a computationally inexpensive tool for extracting state estimates. Numerical results have demonstrated

the gains in efficiency which are possible using the proposedapproach.

As pointed out by one anonymous reviewer, it may be possible to apply similar techniques for implementation

of the CPHD filter. This is a possible avenue for future work.

REFERENCES

[1] R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,”IEEE Trans. Aerosp. Electron. Syst., pp. 1152–1178,

October 2003.

[2] ——, Statistical Multisource-Multitarget Information Fusion. Artech House, 2007.

DRAFT



24

n

k

 

 

5 10 15 20 25 30 35 40

5

4

3

2

1

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

k

 

 

5 10 15 20 25 30 35 40

5

4

3

2

1

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

k

 

 

5 10 15 20 25 30 35 40

5

4

3

2

1

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9. Normalized histograms of the total mass of the particle set. Each vertical strip in the image corresponds to a normalized histogram

of the total mass of the particle set at that time index, averaged over100 independent runs of the algorithm, each with a different observation

record. Top left: Bootstrap filter. Top right: UKF–GM filter.Bottom: Auxiliary filter. Superimposed plot (dashed) is the true number of targets.

5 10 15 20 25 30 35 40
0

500

1000

1500

n

E
S

S

Fig. 10. Effective Sample size vs iteration of the algorithm, averaged over100 runs, each with a different observation record. Dashed: Auxiliary

filter. Solid: Bootstrap filter.

[3] S. Singh, B.-N. Vo., A. Baddeley, and S. Zuyev, “Filters for spatial point processes,” University of Cambridge, Department of Engineering

– Signal Processing Lab, Tech. Rep. CUED/F-INFENG/TR.591,2007.

[4] Y. Bar-Shalom and X. R. Li,Multitarget-Multisensor Tracking: Principles and Techniques. YBS Publishing, 1995.

[5] R. Mahler, “Phd filters of higher order in target number,”IEEE Trans. on Aerosp. Electron. Syst., vol. 43, no. 4, pp. 1523–1543, October

2007.

[6] E. Biglieri and M. Lops, “Multiuser detection in a dynamicenvironment - part I: User identification and data detection,” IEEE Trans. Inf.

DRAFT



25

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

x
1

x 3

Fig. 11. Ground truth target positions (solid line) and state estimates (crosses) for auxiliary PHD filter.

Theory, vol. 53, no. 9, pp. 3158–3170, September 2007.

[7] E. Maggio, E. Piccardo, C. Regazzoni, and A. Cavallaro, “Particle PHD filter for multi-target visual tracking,” inProceedings of IEEE

International Conference on Acoustics, Speech, and SignalProcessing (ICASSP), Honolulu, Hawaii., vol. 1, 2007, pp. 1101–1104.

[8] W. K. Ma, B. Vo, S. Singh, and A. Baddeley, “Tracking an unknown and time varying number of speakers using TDOA measurements:

A random finite set approach,”IEEE Trans. Signal Processing, vol. 54, no. 9, pp. 3291–3304, 2006.

[9] D. Clark, A. T. Cemgil, P. Peeling, and S. Godsill, “Multi-object tracking of sinusoidal components in audio with the Gaussian mixture

probability hypothesis density filter,” inProceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

(WASPAA), 2007, pp. 339–342.

[10] A. Doucet, N. de Freitas, and N. Gordon, Eds.,Sequential Monte Carlo Methods in Practice, ser. Statistics for Engineering and Information

Science. New York: Springer Verlag, 2001.

[11] H. W. Sorenson and A. R. Stubberud, “Nonlinear filteringby approximation of the a posteriori density,”International Journal of Control,

vol. 8, pp. 33–51, 1968.

[12] S. Julier and J. Uhlmann, “A new extension of the Kalman fillter to nonlinear systems,” inProceedings of SPIE, vol. 3068, 1997, pp.

182–193.

[13] C. Hue, J.-P. L. Cadre, and P. Perez, “Tracking multiple objects with particle filtering,”IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3,

pp. 791–812, July 2002.

[14] A. Doucet, B.-N. Vo, C. Andrieu, and M. Davy, “Particle filtering for multi-target tracking and sensor management,” inProceedings of

the Fifth International Conference on Information Fusion, vol. 1, 2002, pp. 474 –481.

[15] J. Vermaak, S. Godsill, and P. Perez, “Monte Carlo filtering for multi target tracking and data association,”IEEE Transactions Aerosp.

Electron. Syst., vol. 41, no. 1, pp. 309–332, January 2005.

[16] W. Ng, J. Li, S. Godsill, and S. K. Pang, “Multitarget initiation, tracking and termination using Bayesian Monte Carlo methods,”The

Computer Journal, vol. 50, no. 6, pp. 674–693, 2007.

[17] M. R. Morelande, C. Kreucher, and K. Kastella, “A Bayesian approach to multiple target detection and tracking,”IEEE Trans. Signal

Processing, vol. 55, no. 5, pp. 1589 –1604, May 2007.

[18] M. Vihola, “Rao-blackwellised particle filtering in random set multitarget tracking,”IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 2,

pp. 689–705, April 2007.

[19] B. Vo, S. Singh, and A. Doucet, “Random finite sets and sequential Monte Carlo methods in multi-target tracking,” inProceedings of the

International Conference on Information Fusion, Cairns, Australia, 2003, pp. 792–799.

[20] H. Siddenblath, “Multi-target particle filtering for the probability hypothesis density,” inProceedings of the International Conference on

Information Fusion, Cairns, Australia, 2003, pp. 800–806.

DRAFT



26

[21] T. Zajic and R. P. S. Mahler, “Particle-systems implementation of the PHD multitarget tracking filter,” inProceedings of SPIE, 2003, pp.

291–299.

[22] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” Journal of the American Statistical Association, vol. 94,

no. 446, pp. 590–599, 1999.

[23] N. Whiteley, S. Singh, and S. Godsill, “Auxiliary particle implementation of the probability hypothesis density filter,” in Proceedings of

IEEE 5th International Symposium on Image and Signal Processing and Analysis (ISPA). Istanbul, Turkey., September 2007.

[24] B. Vo, S. Singh, and A. Doucet, “Sequential Monte Carlo methods for multitarget filtering with random finite sets,”IEEE Trans. on Aerosp.

Electron. Syst., vol. 41, no. 4, pp. 1224–1245, October 2005.

[25] D. J. Daley and D. Vere-Jones,An Introduction to the Theory of Point Processes, 2nd ed., ser. Probability and Its Applications. New

York: Springer, 2003, vol. I: Elementary Theory and Methods.

[26] J. F. C. Kingman,Poisson Processes, ser. Oxford Studies in Probability. Oxford University Press, 1993.

[27] B. Vo and W.-K. Ma, “The Gaussian mixture probability hypothesis density filter,”IEEE Trans. Signal Processing, vol. 54, no. 11, pp.

4091–4104, November 2006.

[28] D. Clark and B. Vo, “Convergence analysis of the gaussian mixture PHD filter,” IEEE Trans. Signal Processing, vol. 55, no. 4, pp.

1204–1212, April 2007.

[29] B. Vo, B. Vo, and A. Cantoni, “Analytic implementations ofthe cardinalized probability hypothesis density filter,”IEEE Trans. Signal

Processing, 2007, to appear.
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