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Abstract

The growth of the maximum norms of quantum eigenstates of classically chaotic systems with increasing energy is
investigated. The maximum norms provide a measure for localization effects in eigenfunctions. An upper bound for the
maxima of random superpositions of random functions is derived. For the random-wave model this gives the boundc

√
lnE

in the semiclassical limitE → ∞. The growth of the maximum norms of random waves is compared with the growth of
the maximum norms of the eigenstates of six quantum billiards which are classically chaotic. The maximum norms of these
systems are numerically shown to be conform with the random-wave model. Furthermore, the distribution of the locations of
the maximum norms is discussed. ©1999 Elsevier Science B.V. All rights reserved.

1. Introduction

One of the important questions in quantum chaos is how the chaoticity of a classical system is reflected in
the behavior of the eigenfunctions of the corresponding quantum system [1]. In this paper, we are concerned
with bounded quantum systems on some two-dimensional Riemannian manifoldsM governed by the stationary
Schrödinger equation (with units~ = 2m = 1)

−1ψn(xxx) = Enψn(xxx) (1)

together with appropriate boundary conditions. Here1 denotes the Laplace–Beltrami operator, which on the Eu-
clidean plane is the usual Laplacian. The systems possess discrete energy spectra{En} which we assume to be
ordered by increasing valueE1 ≤ E2 ≤ . . . . In the following we assume the eigenfunctionsψn to be normalized,
i.e.,‖ψn‖2 = 1. The corresponding classical system is the geodesic flow on the tangent bundleTM.

A model for the eigenfunctions of systems with strongly chaotic classical flow has been put forward by Berry,
who conjectured that they behave like a random superposition of plane waves [2]. In the Euclidean case the random
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superposition of plane waves on ad-dimensional regionD ⊂ Rd is of the form

f (xxx) = b√
N

N∑
n=1

an cos(kkknxxx + εn), (2)

wherean ∈ R are assumed to be independent Gaussian random variables;εn are equidistributed random variables
on [0,2π [, andb is a real constant. The momentakkkn ∈ Rd satisfy|kkkn| = √

E and are randomly equidistributed on
the sphere of radius

√
E. ForN, E → ∞ the choiceb = √

2/vol(D) leads to a normalized random function.
The random-wave model can be used to obtain predictions on the behavior of eigenfunctions. For example, random

waves have a Gaussian amplitude distribution [2], which was found numerically for the eigenfunctions of several
chaotic systems, see e.g., [3–6]. A further result which shows that almost all eigenfunctions of an ergodic system
share some properties with random waves is the quantum ergodicity theorem [7–12]. It states that in classically
ergodic systems almost all eigenfunctions become equidistributed in the semiclassical limit. Almost all means that
the fraction of eigenfunctions which behaves differently tends to zero in the semiclassical limit. So the quantum
ergodicity theorem does not exclude the possibility of localization effects in a subset of eigenfunctions, e.g., the
existence of scars [3,13] or bouncing-ball modes [3,14,15]. It is one of the most interesting open problems in the
subject to determine the properties of a given classical system which are necessary to exclude any localization of
eigenfunctions. If there are no exceptional subsequences of eigenfunctions this situation is called unique quantum
ergodicity. This behavior is conjectured for the eigenfunctions of the Laplacian on a compact manifold of negative
curvature [16,17], which is supported by numerical results [18,19].

A set of quantities which measure localization effects is given by theLp norms of the eigenfunctionsψn,

‖ψn‖p :=
(∫

M
dν|ψn|p

)1/p

for p ≥ 1, (3)

where dν is the invariant volume element onM. Since large values of the eigenfunctions contribute stronger for
largerp, high values of theLp norms forp > 2 indicate a non-uniformly distributed eigenfunction. The maximum
or L∞ norm ‖ψn‖∞, which is just the maximum of the absolute value of the eigenfunctionψn, gives the most
sensitive measure.

A general upper bound for eigenfunctions of the Laplace–Beltrami operator1 on compactd-dimensional Rie-
mannian manifoldsM without boundary is obtained by Seeger and Sogge [20]

‖ψn‖p < cE
δ(p)/2
n for

2(d + 1)

d − 1
≤ p ≤ ∞, (4)

‖ψn‖p < cE
(d−1)(2−p′)/p′
n for 2 ≤ p ≤ 2(d + 1)

d − 1
, (5)

with c > 0, δ(p) := max{d|1/p−1/2|−1/2,0} and 1/p+1/p′ = 1. The bound on theL∞ norm follows already
from a result of Hörmander [21]. In two dimensions this simplifies to

‖ψn‖∞ < cE
1/4
n . (6)

This upper bound is sharp as is demonstrated by the eigenfunctionsYml for m = 0 on the sphereM = S2.
Another example is provided by the eigenfunctions of the circular billiard, where one can show that asymptot-
ically for the rotational invariant eigenfunctions‖ψn‖∞ ∼ J1(j

′
11)E

1/4
n , wherej ′

11 is the first positive zero of
J ′

1(x).
The upper bound Eq. (6) has also been proven for the Dirichlet Laplacian on compact manifolds with boundary

by Grieser [22]. However, for surfaces with strongly chaotic flow this upper bound is probably far away from the
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true one, and for the two-dimensional case it is conjectured [16,23] that

‖ψn‖∞ < cε E
ε
n, ∀ ε > 0. (7)

This conjecture cannot carry over to three dimensions since there are counterexamples which violate Eq. (7).
Indeed, Rudnick and Sarnak showed that there exist arithmetic systems in three dimensions which possess a subse-
quence of Hecke eigenfunctionsψnj with ‖ψnj ‖∞ > cE

1/4
nj [24]. Hecke eigenfunctions are eigenfunctions of the

Laplacian which are simultaneously eigenfunctions of the so-called Hecke operators which exists in the arithmetic
case only. Therefore, an eigenfunction with non-degenerate eigenvalue is automatically a Hecke eigenfunction.
An upper bound for Hecke eigenfunctions on certain three-dimensional arithmetic manifolds has been derived by
Koyama and is given by‖ψn‖∞ < cεE

37/76+ε
n ,∀ ε > 0 [25]. In the case of two-dimensional systems with arithmetic

chaos [16,26–30] the upper bound Eq. (6) could be improved for a Hecke basis by Iwaniec and Sarnak [23]

‖ψn‖∞ < cεE
5/24+ε
n , ∀ ε > 0. (8)

For these systems also the lower bound

‖ψn‖∞ ≥ c
√

ln(lnEn) (9)

is derived.
Further results on theL∞ norms of eigenstates of integrable systems have been derived by Bourgain [31] and

VanderKam ([32], for corrections see [33]). Bourgain claims that under certain non-recurrence conditions, which
are e.g., not fulfilled for surfaces of revolution, one has‖ψn‖∞ ≤ cE

(d−1)/4−ε
n for someε > 0 which depends on

the system. VanderKam showed that almost all bases of eigenfunctions onS2 satisfy‖ψn‖∞ ≤ c(lnEn)2, and that
there exist bases with‖ψn‖∞ ≤ c

√
lnEn. But this extraordinary behavior is due to the high degeneracy of the

eigenvalues.
For the case of quantized maps analytical and numerical results on theL∞ norms of Husimi densities are obtained

by Nonnenmacher and Voros [34], which are analogous to the bound
√

lnEn for the case of quantized flows.
Concerning theL∞ norms of random waves, Hejhal and Rackner [4] (see also [16]) give arguments that in

analogy with the result of Salem and Zygmund [35] for random Fourier series one should have

‖ψn‖∞ ' c
√

lnEn. (10)

This growth of the maximum norms of random waves can be understood by the following heuristic argument.
Since the random waves vary on a scale given by the de Broglie wavelengthλB = 2π/

√
E (see e.g., [36]), one

has per dimension and per de Broglie wavelengthλB on average two extrema in a given random wave. Thus, the
number of extremaNext of an eigenfunction in a billiard with volume vol(D) is in the semiclassical limit

Next = 2d
vol(D)

λdB

= Ed/2vol(D)

πd
, (11)

whered is the dimension of the manifoldM. The random waves, Eq. (2), have a Gaussian amplitude distribution
for N,E → ∞, such thatP(|f |) = (2/

√
2πσ)exp(−|f |2/2σ 2). The widthσ is determined by the volume of the

billiard. For an amplitude|f | to occur, one has to require at leastNextP(|f |) = 1. Solving this equation for|f |
provides an estimate of‖f ‖∞. For vol(D) = 1, d = 2 andσ = 1/

√
vol(D), one obtains

‖f ‖∞ '
√

2
√

lnE − ln(23/2π5/2) '
√

2
√

lnE forE → ∞. (12)

In this work we concentrate on the random-wave model, but we would like to mention a further model for
eigenfunctions of chaotic systems which has been proposed by Zelditch [37]. He starts with a given basis of
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eigenfunctions of an auxiliary Hamilton operator on a manifoldM and constructs a random basis by applying a
randomly chosen unitary operator to this basis. These new functions are considered as a model for eigenfunctions
of a chaotic Hamiltonian on the manifold. Then, he can prove for instance that almost all such bases are quantum
ergodic. For theL∞ norms of them nothing is known. The advantage of this model is that the auxiliary basis lives on
the manifold and satisfies appropriate boundary conditions, so the model eigenfunction have these properties too.
This is not the case for the random-wave model Eq. (2), which can be thought of as being a local model which does
not take into account the global geometry of the manifold, or boundary conditions. On the other hand, the advantage
of our random waves is that they are by construction local solutions of the eigenvalue equation (1) in contrast
to the random bases. Therefore, at finite energies one has a better coincidence of the local fluctuation properties,
characterized by the de Broglie wavelength, of the random waves with the true eigenfunctions.

This paper is organized as follows. Section 2 concerns the distribution of the maxima of random waves, and in
particular, gives a proof of an upper bound, similar to Eq. (10), including the value of the constantc. In Section 3,
we present the numerical results for theL∞ norms for a number of different chaotic systems, including Euclidean
billiards and arithmetic and non-arithmetic systems on surfaces of constant negative curvature, and for some random-
wave ensembles, and compare them with the theoretical prediction from Section 2. We conclude with a summary
of our results.

2. The maxima of random waves

There exist a number of results in the literature concerning the maxima of a random superposition of certain basis
functions. This has started with the work of Salem and Zygmund on trigonometric series with random coefficients
[35], and has been generalized by Kahane [38]. To treat the random-wave model (2) we need a generalization of
this result.

LetD ⊂ Rd be a compact domain, and letB be a space of bounded real functions onD,

‖f ‖∞ = max
xxx∈D

|f (xxx)| ≤ b (13)

for all f ∈ B. Furthermore, we assume that there exists a constantρ > 0 such that for any finite sumf =
(1/

√
N)
∑N
n=1anfn with fn ∈ B andan ∈ R one has

vol(Af ) ≥ 1

ρ
(14)

whereAf := {xxx ∈ D|f (xxx) ≥ (1/2)‖f ‖∞}. This means that the functions inB fluctuate on a length scale given by
ρ1/d . Now we choose some probability measureµ(fn) onB and study the random series

f (xxx) = 1√
N

N∑
n=1

anfn(xxx), (15)

where thefn ∈ B are independently, identically distributed according to the probability measureµ(fn), and the
an ∈ R are chosen to be independent subnormal random variables. Recall that a random variablea ∈ R is called
subnormal if the expectation value of eαa satisfies

E(eαa) :=
∫

eαa dσ(a) ≤ eα
2/2, (16)

for α ∈ R, whereσ(a) denotes the probability measure ofa. If equality holds then the random variablea is normal
distributed.
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Kahane has studied the distribution of‖f ‖∞ for random series similar to Eq. (15), but with thefn fixed. His
methods carry over with modifications to our situation leading to:

Theorem 1. Let f be of the form(15) with an subnormal, and assume that the bounds(13) and(14) hold, then for
β > (2ρvol(D))−1

P(‖f ‖∞ ≥ 3b
√

ln(2ρ vol(D)β)) ≤ 1

β
, (17)

whereP(X) denotes the probability that the event X becomes true.

Proof. We first prove the caseb = 1, the general case follows just by multiplication withb. We start by estimating
E(eαf (xxx)). First we consider an individual term in the series,anfn(xxx)/

√
N ,

E(eαanfn(xxx)/
√
N)=

∫ ∫
eαanfn(xxx)/

√
N dσ(an)dµ(fn) ≤

∫
e(αfn(xxx))

2/2N dµ(fn)

≤
∫

eα
2/2N dµ(fn) = eα

2/2N, (18)

where we have used thatan is subnormal (16), and thatfn ∈ B is bounded byb = 1. Now by the independence of
an andfn and with Eq. (18) one gets

E(eαf (xxx)) = E
(
N∏
n=1

eαanfn/
√
N

)
=

N∏
n=1

E

(
eαanfn/

√
N
)

≤ eα
2/2. (19)

According to the assumption vol(Af ) ≥ 1/ρ, and with Eq. (19) we get

1

ρ
E(eα‖f ‖∞/2) ≤ E

(∫
Af

eα‖f ‖∞/2ddx

)
≤ E

(∫
Af

{
eαf (xxx) + e−αf (xxx)

}
ddx

)

≤ E
(∫

D

{
eαf (xxx) + e−αf (xxx)

}
ddx

)
=
∫
D

E(eαf (xxx) + e−αf (xxx))ddx

≤ 2vol(D)E(eαf (xxx)) ≤ 2vol(D)eα
2/2. (20)

Now we estimate the probability that‖f ‖∞ ≥ α + 2 ln(2vol(D)βρ)/α for the parametersα, β > 0, which will
be fixed below. This is given by

P

(
‖f ‖∞ ≥ α + 2

α
ln(2vol(D)βρ)

)
= E

(
2

(
‖f ‖∞ − α − 2

α
ln(2vol(D)βρ)

))
, (21)

where2(x) = 1 for x ≥ 0 and2(x) = 0 for x < 0. Since2(x) ≤ eαx/2 for all α > 0 we get

P

(
‖f ‖∞ ≥ α + 2

α
ln(2vol(D)βρ)

)
≤ E

(
eα/2(‖f ‖∞−α−(2/α) ln(2vol(D)βρ))

)

= E
(
eα‖f ‖∞/2

)
e−α2/2 1

2vol(D)βρ
≤ 1

β
, (22)

where the result (20) has been used in the last step.
The estimate becomes optimal if we chooseα = √

ln(2vol(D)βρ), and in order that the logarithm is positive
we have to impose the conditionβ > (2ρvol(D))−1. This gives

P
(
‖f ‖∞ ≥ 3

√
ln(2vol(D)βρ)

)
≤ 1

β
, (23)
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for β > (2ρvol(D))−1, which finishes the proof of the Theorem forb = 1. For otherb one applies the above proof
to f/b, which gives Eq. (17). �

If one wants to model the eigenfunctions of a chaotic system by random waves, one will chooseB as a space of
solutions of the Helmholtz equation with energyE, i.e., thefn ∈ B satisfy1fn+Efn = 0, but without demanding
any boundary conditions on∂D. For example, plane waves as in Eq. (2) or circular waves given by Bessel functions.
For such functions one expects that they fluctuate on a length of a de Broglie wavelengthλB = 2π/

√
E, see e.g.,

[36]. This would imply for the parameterρ an estimate

ρ ≥ C′Ed/2. (24)

Applying Theorem 1 tof = (1/
√
N)
∑N
n=1anfn, and choosingβ = Eδ for someδ > 0 leads together with the

assumption (24) to

P

(
‖f ‖∞ ≥ 3b

√(
d

2
+ δ

)
ln(E)+ ln(2vol(D)C′)

)
≤ 1

Eδ
, (25)

for every probability measureµ onB. Since this is valid for anyδ > 0 we get in the limitE → ∞

lim
E→∞

sup
‖f ‖∞√

lnE
≤ 3b

√
d

2
, (26)

with probability one. So the maxima of the random waves do not grow faster than
√

lnE. What is remarkable about
this result is that Theorem 1 and therefore Eq. (26) are independent of the special properties of the functions inB,
and of the probability measureµ onB, as long as the estimate (24) is satisfied.

In the next Section, we will compare the behavior of eigenfunctions of classically chaotic systems with the
behavior of the random-wave model (2). In the setup of Theorem 1 the spaceB is now given by the set of all
functions of the formb cos(kxkxkx + ε) with |kkk| = √

E andε ∈ [0,2π [. For random waves which are normalized on
the unit square with respect to theL2 norm in the limitN → ∞, one hasb = √

2. The spaceB is parameterized by
Sd−1 × [0,2π ], whereSd−1 denotes the unit sphere inRd . The measureµ onB is given by(1/2π)dν dε, where
dν is the normalized Liouville measure on the unit-sphere. To apply Theorem 1 we need an estimate like Eq. (24)
for the functions (2).

Lemma 1. For anyf of the form(2) with |kn|2 = E one has

vol(Af ) ≥ C

Ed/2
, (27)

with C independent off . So the parameterρ is given byρ = Ed/2/C

Proof. The functionf is of the formf (xxx) = (1/
√
N)
∑N
n=1an cos(kkknxxx + εn). For any unit vector̂e ∈ Rn one has

|(ê∇∇∇)lf (xxx)| ≤ El/2C with l ∈ N andC ≤ ∑ |an|. SinceAf = Acf for everyc 6= 0 we can assume that

sup max
x∈D

∣∣∣[(ê∇∇∇)lf ] (xxx)∣∣∣E−l/2 = 1, (28)

where the supremum is taken over all unit vectorsê and alll ∈ N. Now chooseaaa ∈ D such that the maximum of
|f (aaa)| = ‖f ‖∞, and consider the Taylor series off (aaa + sê) for an arbitraryê ∈ Rd with |ê| = 1,

f (aaa + sê) =
∞∑
l=0

1

l!

[
(ê∇∇∇)lf

]
(aaa)sl, (29)
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which is absolutely convergent. Together with Eq. (28) one obtains

|f (aaa + sê)− f (aaa)| ≤
∞∑
l=1

1

l!

∣∣∣[(ê∇∇∇)lf ] (aaa)∣∣∣ |s|l ≤
∞∑
l=1

1

l!

(√
E|s|

)l = e
√
E|s| − 1. (30)

If we demand that e
√
E|s| − 1 ≤ |f (aaa)|/2, which is equivalent to|s| ≤ ln(1 + |f (aaa)|/2)/√E, we have that

|f (aaa + sê)| ≥ |f (aaa)|/2. So this gives the estimate

vol(Af ) ≥ vol

(
B

(
aaa,

ln(1 + |f (aaa)|/2)√
E

)
∩D

)
, (31)

whereB(aaa, r) denotes the ball of radiusr aroundaaa. The volume of the set on the right-hand side is larger than some
constant timesE−d/2 if ∂D is smooth. The proof is complete if we can show that|f (aaa)| = maxx∈D|f (xxx)| ≥ c > 0
for some constantc. If this would not be the case, then there would exist a sequencef (j) with maxx∈D|f (j)(xxx)| → 0.
But this contradicts the assumption (28) for anyj , because for an analytic function which converges uniformly to
zero, all derivatives converge to zero too. �

Specializing the estimate (26) of the maxima of random waves to our case, i.e.,b = √
2 andd = 2, gives

Corollory 1 (L∞ norms for the random-wave model).For a random function of the type(2) with b = √
2 one has

lim
E→∞

sup
‖f ‖∞√

lnE
≤ 3

√
2. (32)

with probability one.

3. Numerical results

For our numerical investigations of theL∞ norms we have chosen strongly chaotic systems on surfaces of
constant negative curvature as well as billiards on the Euclidean plane. These systems are the same as in our studies
concerning the rate of quantum ergodicity [39,40].

Three systems are given by a point particle sliding freely on a surface or within a domain of constant negative
Gaussian curvature providing a model for an Anosov system (see [1] and references therein). Two of them are
hyperbolic triangular billiards with a domain uniquely defined by the three anglesα = π/2, β = π/3 andγ =
π/8. On the sidesa, b andc lying opposite to the corresponding angles the boundary conditions NND and DNN
(N=Neumann, D=Dirichlet) are imposed leading to a non-arithmetic and an arithmetic system, respectively. The
simple difference in the boundary condition leads to completely different statistics in the energy spectra [30]; whereas
the rate of quantum ergodicity is, in contrast, the same for both [39]. For the ‘NND’ and ‘DNN’ billiards we have
computed the first 2092 and 2099 eigenfunctions, respectively. In addition to these two triangles an asymmetric
hyperbolic octagon is included in our analysis which only possesses one involution symmetry, which is always
present in hyperbolic octagons. It is non-arithmetic and can easily be desymmetrized with respect to the involution
symmetry. The analysis concerns the subspectrum belonging to the positive parity class comprising the first 3139
eigenfunctions.

As chaotic Euclidean billiards we choose the stadium and the cardioid billiard. The stadium billiard is proven
to be aK-system [41]. The height of the desymmetrized billiard is chosen to be 1, and the length of the upper
horizontal line isa = 1.8. For this system our analysis is based on computations of the first 2000 eigenfunctions
for the odd–odd and for the even–even parity, i.e., Dirichlet and Neumann boundary conditions on the symmetry
lines, respectively. For previous investigations of the eigenfunctions see e.g., the references in [15].
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Fig. 1. The maximum norms of the hyperbolic triangular billiards with ‘DNN’ (a) and ‘NND’ (b) boundary conditions, the hyperbolic octagon
(c), the cardioid billiard (d) and the stadium billiard for odd–odd (e) and for even–even (f) parity are shown. The upper curve is the function
�(E), Eq. (33), which is two times smaller than the upper bound (32). In addition, the mean of the 200 random-wave sequences is shown for
the 3000 energiesEn = 4πn, with n = 1, . . . ,3000.

The cardioid billiard is the limiting case of a family of billiards introduced in [42]. The cardioid billiard is proven
to be strongly chaotic, see [43,44] and references therein. The eigenvalues of the cardioid billiard have been provided
by Prosen and Robnik [45] and were calculated by means of the conformal mapping technique, see e.g., [46,47].
Using these eigenvalues, our study is based on computations of the first 6000 eigenfunctions of odd symmetry,
which were obtained from the eigenvalues by means of the boundary integral method [48,49] using the singular
value decomposition method [5], which was also used for the other systems under consideration.

To determine how well the semiclassical upper bound (32) matches the behaviour of random waves corresponding
to the first few thousand eigenfunctions, we have computed 200 random-wave sequences each consisting of 3000
‘eigenstates’. We generate the random waves according to Eq. (2) withN = 1000 using random-number generators.
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Fig. 2. The maximum norms of a very high energy range are shown for the positive parity class of the hyperbolic octagon (see also Fig. 1c) in
comparison with the function�(E), Eq. (33). The states correspond to the 25 001 th up to the 25 500 th state with respect to the positive parity
class.

A single random wave is normalized on the unit square with respect to theL2 norm. The energies in a sequence
are assumed to be distributed according to Weyl’s law, i.e.,En = 4πn, where we consideredn = 1, . . . ,3000.
For each random wave the maximum norm is computed on the unit square, and the upper bound (32) was never
violated. Indeed, the upper bound (32) is also fulfilled with a coefficientc, which is by a factor two smaller than
the valuec = 3

√
2 = 4.24. . . in (32) at least for our 200 numerically generated random sequences. Forc = 2.0

we found six cases in 600 000 random waves, which violate the bound, whereas forc = 3/
√

2 = 2.12. . . no such
case is found. Therefore, in the following we will compare the maximum norms of the actual chaotic systems with
the function

�(E) = 3√
2

√
lnE (33)

which is by a factor two smaller than the upper bound (32).
Fig. 1 shows the maximum norms belonging to the six chaotic systems. The maximum norms of the hyperbolic

triangular billiard with ‘DNN’ and ‘NND’ boundary conditions are shown in Figs. 1(a,b), respectively. The norms
for the hyperbolic octagon, the cardioid billiard and the stadium billiard with odd–odd and even–even parity are
displayed in Figs. 1(c,d,e,f), respectively. In order to compare the norms with those of the random-wave model
on the unit square, the chaotic systems have to be scaled to unit area, i.e., the energy has to be multiplied by the
area of the billiard and the norm has to be multiplied by the square root of the area. Fig. 1 also shows the mean
of the 200 different maximum norms of the random-wave model visible as the dark band within the cloud of dots
corresponding to maximum norms of the eigenstates of the chaotic systems.

For all systems the maximum norms are in accordance with the upper bound (32). With the exception of the
arithmetic system, all maximum norms are also smaller than the function�(E), Eq. (33). The maximum norms of
the arithmetic system are larger than the maximum norms of our 200 random-wave sequences. This is likely to be
caused by the underlying arithmetic structure or by the existence of Hecke operators, which relate the values of the
wave functions at different locations. Thus, a difference between wave functions of arithmetic and non-arithmetic
systems is found. In [39] the rate of quantum ergodicity is found to be the same for the two triangular billiards, and
in [50] the amplitude distributionP(ψ), the autocorrelation functionCC(s) and the distribution of the expansion
coefficients with respect to hyperbolic circular waves are studied for both systems and no striking difference is
observed. Only in [51] a difference in the amplitude distribution for automorphic forms is found in the case of
non-compact surfaces.
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Fig. 3. The maximum norms of the first 1244 eigenfunctions of the circular billiard are shown in comparison with its asymptotic bound (full
curve). The function�(E), Eq. (33), is shown as a dotted curve.

In Figs. 1(e,f) one observes for the stadium billiard especially low maximum norms around values slightly above
two, which are due to the so-called bouncing-ball modes. These eigenfunctions localize on the bouncing-ball orbits,
and can approximately be described by a product of sine functions [14,15,52], such that their maximum norms are
bounded. The even–even parity class shows stronger fluctuations around the mean of the random-wave sequences
than the odd–odd class.

The upper bound (32) is also tested in a much higher energy range in the case of the asymmetric octagon, for
which from the 25 001th state with respect to the positive parity class the next 500 eigenfunctions are computed. In
Fig. 2 the maximum norms are shown in comparison with the function�(E), Eq. (33). It is clearly seen that in this
high energy range the random-wave picture is again well supported.

To demonstrate the contrast to wave functions of integrable systems we show in Fig. 3 the maximum norms of
the circular billiard in the Euclidean plane for the first 1244 eigenfunctions. For the maximum norms of the circular
billiard an asymptotic upper bound can be expressed in terms of the Bessel functionJ1(x)

‖ψn‖∞ . J1(j
′
11)E

1/4
n = 0.5818652. . . · E1/4

n ,

wherej ′
11 is the first positive zero ofJ ′

1(x). Here, the maximum norms grow much stronger than in the case of the
random-wave model or chaotic systems.

The positions at which the eigenfunctions possess their maximum norms, are shown in Fig. 4 for the six systems. In
the case of the hyperbolic triangular billiards a high concentration of such positions is observed along the boundaries
on which Neumann conditions are imposed. With the exception of these boundaries the locations of maximum norms
look uniformly equidistributed. In the case of the hyperbolic octagon only one half of the octagon is shown because
of the chosen positive parity symmetry. Here, periodic boundary conditions are imposed and, thus, no attraction
of maxima along a Neumann boundary can occur. The apparent higher density of maxima towards the unit circle,
which represents the boundary of the Poincaré disc (see Fig. 5), is solely due to the non-Euclidean metric. In the
case of the three hyperbolic systems one observes, besides effects from Neumann boundary conditions, uniformly
distributed positions. For the Euclidean billiards we find for the stadium billiard with even–even parity a large
number of maxima located on the boundaries with Neumann boundary conditions. In contrast to the hyperbolic
systems, the positions of the maxima of the Euclidean billiards are not uniformly distributed, instead we observe
some structures within the billiards. The reason for these structures is unclear and might be an effect due to the
focusing parts of the boundary. These patterns have some similarity with the structure of the sums

∑
En≤E |ψn(xxx)|2

which are asymptotically governed by boundary effects, see [39,40]. From Bogomolny’s periodic orbit analysis of
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Fig. 4. The locations at which the eigenfunctions have their maximal value‖ψn‖∞ are displayed for the six systems as in Fig. 1.

Fig. 5. The intensity|ψn|2 for the eigenstaten = 533. It has the largest observed maximum norm.

eigenfunctions it follows that they are expected to have maxima at focal points, or at points where periodic orbits
cross [53]. Indeed, for the cardioid billiard the region with the largest accumulation of maxima corresponds to the
places, where the shortest periodic orbit has its focal points.

To illustrate the fact that the maximum norm is a measure for localization effects of eigenstates we present in Figs.
5 and 6 the eigenstates with the highest maximum norms found in the hyperbolic octagon (Fig. 5) and in the cardioid



12 R. Aurich et al. / Physica D 129 (1999) 1–14

Fig. 6. Density plot of|ψn|2 for n = 2605 the cardioid billiard, for which the largest maximum among the first 6000 eigenfunctions occurs. The
eigenfunction shows localization along the unstable period-two orbit, with the maxima located near the two focal points of the orbit.

billiard (Fig. 6). In the former case the eigenstate is strongly localized on an elliptic point of the desymmetrized
group describing the octagon. Since the elliptic point lies on the boundary on which a periodic boundary condition
is imposed, the peak shows up at the two corresponding boundaries. In the case of the cardioid billiard the eigenstate
is strongly localized along the unstable period-two orbit. The maximum of the eigenfunction is located close to the
two focal points of this orbit.

4. Summary

For classically strongly chaotic systems it is expected that the eigenfunctions behave like a superposition of
plane waves with random amplitudes and random phases. One implication of the random-wave model is that the
eigenfunctions do not show strong localization properties, which is betrayed by a very slow growth rate of the
maxima of the eigenfunctions. In Section 2 an upper bound, Eq. (32), for random-wave models of eigenfunctions is
derived, which is proportional to

√
lnE. This bound is much smaller than the general upper bound of eigenfunctions

in two-dimensional systems, which is proportional toE1/4.
In Section 3 the behaviour of numerically generated random waves is compared with the upper bound Eq. (32).

This comparison reveals that the right-hand side of Eq. (32) could be chosen two times smaller such that no violations
of the upper bound occur. This two-fold smaller bound is compared with six strongly chaotic systems, and it is
found that only the arithmetic system violates it. But the upper bound Eq. (32) is fulfilled for all six chaotic systems
including the arithmetic one. Thus, a peculiar behavior is found in the eigenstates of an arithmetic system.
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Furthermore we investigate the location of the maxima of the eigenfunctions and found in the case of the Euclidean
billiards some interesting patterns which seem to be related to the classical dynamics.

Our results are in accordance with the random-wave picture of eigenfunctions, and they support the existing
conjectures on the behavior of the maximum norms of eigenfunctions of strongly chaotic systems.
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